Math, asked by dashaniket92582, 4 months ago

x-2/x+2+x+2/x-2=4 find the quadratic equations ​

Answers

Answered by Flaunt
30

\sf\huge\bold{\underline{\underline{{Solution}}}}

\sf \longmapsto \dfrac{x  -  2}{x + 2}  =  \dfrac{x + 2}{x - 2}  = 4

Identity used here :

  • (a+b)(a-b)=a²-b²
  • (a+b)²=a²+b²+2ab
  • (a-b)²=a²+b²-2ab

\sf \longmapsto \dfrac{(x - 2)(x - 2) + (x + 2)(x + 2)}{(x + 2)(x - 2)}

\sf \longmapsto \dfrac{ {(x - 2)}^{2} +  {(x + 2)}^{2}  }{ {x}^{2} -  {(2)}^{2}  }  = 4

\sf \longmapsto \dfrac{ {x}^{2}  +  {2}^{2} - 2(x)(2) +  {x}^{2}   +  {2}^{2}  + 2(x)(2)}{ {x}^{2}  -  {2}^{2} }  = 4

\sf \longmapsto \dfrac{ {x}^{2}  + 4{ \cancel{ - 4x }}+  {x}^{2}  + 4 + { \cancel{4x}}}{ {x}^{2} -  {2}^{2}  }  = 4

\sf \longmapsto \dfrac{2 {x}^{2} + 8 }{ {x}^{2} - 4 }  = 4

\sf \longmapsto2 {x}^{2}  + 8 = 4 {x}^{2}  - 16

\sf \longmapsto2( {x}^{2}  + 4) = 4( {x}^{2}  - 4)

\sf \longmapsto {x}^{2}  + 4 = 2( {x}^{2}  - 4)

\sf \longmapsto {x}^{2}  + 4 = 2 {x}^{2}  - 8

\sf \longmapsto4 + 8 = 2 {x}^{2}  -  {x}^{2}

\sf \longmapsto {x}^{2}  = 12

\sf \longmapsto { \bold{ x =  { \bold{ \sqrt{12} = \pm2 \sqrt{3}  }}}}

Check:-

\sf \longmapsto \dfrac{x - 2}{x + 2}  +  \dfrac{x + 2}{x - 2}  = 4

\sf \longmapsto \dfrac{2 \sqrt{3} - 2 }{2 \sqrt{3}  + 2}  +  \dfrac{2 \sqrt{3} + 2 }{2 \sqrt{3}  - 2}

\sf \longmapsto \dfrac{(2 \sqrt{3} - 2)(2 \sqrt{3}  - 2) + (2 \sqrt{3}  + 2)(2 \sqrt{3}  + 2) }{ {(2 \sqrt{3} )}^{2}  -  {2}^{2} }

\sf \longmapsto \dfrac{ {(2 \sqrt{3}  - 2)}^{2} +  {(2 \sqrt{3}  + 2)}^{2}  }{12 - 4}

\sf \longmapsto \dfrac{ {(2 \sqrt{3}) }^{2}  +  {2}^{2} - 2(2 \sqrt{3} )(2) +  {(2 \sqrt{3} )}^{2}  +  {2}^{2}   + 2(2)(2 \sqrt{3} )}{8}

\sf \longmapsto \dfrac{12 + 4 { \cancel{- 8 \sqrt{3}}} + 12 + 4 + { \cancel{8 \sqrt{3} }} }{8}

\sf \longmapsto \dfrac{12 + 4 + 12 + 4}{8}  =  \dfrac{32}{8}  = 4

Similar questions