Math, asked by aanchal200519, 3 months ago

x-2/x+2+x+2/x-2=4
solve it urgent!!​

Attachments:

Answers

Answered by Anonymous
25

\large\sf\underline{Given\::}

Equation :

  • \sf\:\frac{x-2}{x+2} + \frac{x+2}{x-2}=4

\large\sf\underline{To\:find\::}

  • The value of x .

\large\sf\underline{Solution\::}

\sf\:\frac{x-2}{x+2} + \frac{x+2}{x-2}=4

  • LCM of (x + 2) (x - 2) = (x + 2) (x - 2)

\sf\:\implies\:\frac{(x-2)(x-2)+(x+2)(x+2)}{(x+2)(x-2)}=4

  • Multiplying the terms

\sf\:\implies\:\frac{(x-2)^{2}+(x+2)^{2}}{(x+2)(x-2)}=4

  • Using algebraic identity in the numerator and denominator

Identity to be used in numerator :

  • \bf\:(a+b)^{2}=a^{2}+2ab+b^{2}

  • \bf\:(a-b)^{2}=a^{2}-2ab+b^{2}

Identity to be used in denominator :

  • \bf\:(a+b)(a-b)=a^{2}-b^{2}

\sf\:\implies\:\frac{(x^{2}-2 \times x \times 2 + 2^{2})+(x^{2}+2 \times x \times 2 + 2^{2})}{x^{2}-2^{2}}=4

\sf\:\implies\:\frac{(x^{2}-4x + 4)+(x^{2}+4x+4)}{x^{2}-4}=4

  • Removing the brackets

\sf\:\implies\:\frac{x^{2}-4x + 4+x^{2}+4x+4}{x^{2}-4}=4

  • Arranging the terms and proceeding with simple calculations

\sf\:\implies\:\frac{x^{2}+x^{2}-4x+4x+4+4}{x^{2}-4}=4

\sf\:\implies\:\frac{2x^{2}-\cancel{4x}+\cancel{4x}+8}{x^{2}-4}=4

\sf\:\implies\:\frac{2x^{2}+8}{x^{2}-4}=4

  • Cross multiplying

\sf\:\implies\:4(x^{2}-4) = 2x^{2}+8

  • Multiplying the terms in LHS

\sf\:\implies\:4x^{2}-16 = 2x^{2}+8

  • Transposing \sf\:+2x^{2} from RHS to LHS it becomes \sf\:-2x^{2} .

\sf\:\implies\:4x^{2}- 2x^{2}-16=8

\sf\:\implies\: 2x^{2}-16=8

  • Transposing -16 to RHS it becomes +16

\sf\:\implies\: 2x^{2}=8+16

\sf\:\implies\: 2x^{2}=24

  • Transposing 2 to other side it goes to denominator

\sf\:\implies\: x^{2}=\frac{24}{2}

  • Reducing the fraction to lower terms

\sf\:\implies\: x^{2}=\cancel{\frac{24}{2}}

\sf\:\implies\: x^{2}=12

  • Transposing square to other side it becomes √

\small{\underline{\boxed{\mathrm\red{:\implies\:x\:=\:\sqrt{12}}}}}

\large\sf\underline{Verifying\::}

Not sure about the answer !? Let's verify it.

In order to verify we would simply plug the value of x as √12 in the given equation. Doing so if we get LHS equal to RHS , our answer must be correct.

Equation :

\sf\:\frac{x-2}{x+2} + \frac{x+2}{x-2}=4

  • Plugging the value of x as √12

\sf\to\:\frac{\sqrt{12}-2}{\sqrt{12}+2} + \frac{\sqrt{12}+2}{\sqrt{12}-2}=4

  • LCM of (√12 + 2) (√12 - 2) = (√12 + 2) (√12 - 2)

\sf\to\:\frac{(\sqrt{12}-2)^{2}+(\sqrt{12}+2)^{2}}{(\sqrt{12}^{2}-2^{2}}=4

\sf\to\:\frac{[(\sqrt{12})^{2}-2 \times \sqrt{12} \times 2 + 2^{2}]+[(\sqrt{12})^{2}+2 \times \sqrt{12} \times 2 + 2^{2}]}{12-4}=4

\sf\to\:\frac{[12-4 \sqrt{12} +4]+[12+4 \sqrt{12}+ 4]}{8}=4

\sf\to\:\frac{12-4 \sqrt{12} +4+12+4 \sqrt{12}+ 4}{8}=4

\sf\to\:\frac{12+12+4+4-\cancel{4 \sqrt{12}} + \cancel{4 \sqrt{12}}}{8}=4

\sf\to\:\frac{32}{8}=4

  • Cross multiplying

\sf\to\:32=4 \times 8

\sf\to\:32=32

\bf\to\:LHS\:=\:RHS

\small{\mathfrak\blue{hence\:verified\:!!}}

!! Hope it helps !!

Similar questions