Math, asked by rajatdas02041962, 10 months ago

x-2/x+2+x+2/x-2=4 solve the quadratic equation the answer is 2 root 3, - 2 root 3 please answer if you know it​

Answers

Answered by Rythm14
26

Question :-

 \frac{x - 2}{x + 2}  +  \frac{x + 2}{x - 2}  = 4

Solution :-

 = >   \frac{(x - 2)(x - 2) + (x + 2)(x + 2)}{(x + 2)(x - 2)}  = 4 \\  =  >  \frac{ {x}^{2}  - 2x - 2x + 4 +  {x + 2x + 2x + 4} }{ {x}^{2} - 2x + 2x - 4 }  = 4 \\  =  >  \frac{ {2x}^{2} + 8 }{ {x}^{2} - 4 }  = 4 \\  =  >  {2x}^{2}  + 8 =  {4x}^{2}  - 16 \\  =  >  {2x}^{2}  = 24 \\  =  >  {x}^{2}  = 12 \\  =  > x =  + 2 \sqrt{3}  \: or \: x \:  =  - 2 \sqrt{3}

____________________

Answered by Anonymous
4

 \huge \fcolorbox{red}{pink}{Solution :)}

Given ,

The equation is  \sf \fbox{ \frac{x - 2}{x + 2}  +  \frac{x + 2}{x - 2}  = 4 }

On simplifying it , we get

\sf \hookrightarrow \frac{{(x - 2)}^{2}  +  {(x + 2)}^{2} }{ {(x)}^{2} -  {(2)}^{2}  }  = 4 \\  \\ \sf \hookrightarrow {(x)}^{2}  +  {(2)}^{2}  - 4x +  {(x)}^{2}  +  {(2)}^{2}   +  4x  = 4 {(x)}^{2}  - 16 \\  \\ \sf \hookrightarrow 2 {(x)}^{2}  + 8 = 4 {(x)}^{2}  - 16 \\  \\ \sf \hookrightarrow - 2 {(x)}^{2}  =  - 24 \\  \\\sf \hookrightarrow  {(x)}^{2}  =  \frac{ - 24}{ - 2}  \\  \\ \sf \hookrightarrow {(x)}^{2} =  \sqrt{12}  \\  \\ \sf \hookrightarrow x =  +  \sqrt{12}   \:  \: or \:  \:  x = -  \sqrt{12}

It can be written as ,

\sf \hookrightarrow x = +  2 \sqrt{3}  \:  \: or \:  \:  x = - 2 \sqrt{3}

Hence , roots of given quadratic equation are +2√3 and -2√3

______________ Keep Smiling


Rythm14: Noice :O
Similar questions