Math, asked by ayush1234510, 3 months ago

(x/2)=(x/3)+1 solve the equation​

Answers

Answered by MananyaMuhury
1

\tt\ \: \:Answer:

\tt\ \: \: x = 6

\tt\ \: \:Step-by-Step\:\: Explanation:

$\tt\ \: \: \bigg(\frac{x}{2}\bigg)=\bigg(\frac{x}{3}\bigg )+1

$\tt\ \: \:\bigg(\frac{x}{2}\bigg)-\bigg(\frac{x}{3}\bigg )=1\bigg[\:Transposing\:  \bigg(\frac{x}{3}\bigg)\:  to\:  LHS\: \:\bigg]

$\tt\ \: \:\frac{3x-2x}{6} =1

$\tt\ \: \:\frac{x}{6} = 1

$\tt\ \: \:x=1 * 6

$\tt\ \: \:x=6

\tt\ \: \:Hope\:\: it\:\: helps\: \:you!!(^◕.◕^)

Answered by TwilightShine
7

Solve the following equation :-

 Q) \: \sf \bigg( \dfrac{x}{2} \bigg) =   \bigg(\dfrac{x}{3} \bigg) + 1

Removing the brackets,

 \longmapsto \sf\dfrac{x}{2}  =  \dfrac{x}{3}  + 1

Let's add x/3 and 1 first.

 \longmapsto\sf\dfrac{x}{2}  =  \dfrac{x}{3}  +  \dfrac{1}{1}

The LCM of 3 and 1 is 3, so multiplying the fractions using their denominators,

 \longmapsto\sf\dfrac{x}{2}  =  \dfrac{x \times 1 + 1 \times 3}{3}

On simplifying,

  \longmapsto\sf\dfrac{x}{2}  =  \dfrac{x +  3}{3}

Transposing 3 from RHS to LHS, changing it's sign,

  \longmapsto\sf\dfrac{x}{2}  \times 3 = x + 3

Multiplying x/2 with 3,

  \longmapsto\sf\dfrac{3x}{2}  = x + 3

Transposing 3 from RHS to LHS, changing it's sign,

  \longmapsto\sf\dfrac{3x}{2}  - 3 = x

Now let's subtract 3 from 3x/2.

 \longmapsto\sf \dfrac{3x}{2}  -  \dfrac{3}{1}  = x

The LCM of 2 and 1 is 2, so multiplying the fractions using their denominators,

  \longmapsto\sf\dfrac{3x \times 1 - 3 \times 2}{2}  = x

On simplifying,

  \longmapsto\sf\dfrac{3x - 6}{2}  = x

Transposing 2 from LHS to RHS, changing it's sign,

 \longmapsto\sf3x - 6 = x \times 2

Multiplying x with 2,

 \longmapsto\sf3x - 6 = 2x

Transposing 6 from LHS to RHS, changing it's sign,

 \longmapsto\sf3x = 2x + 6

Transposing 2x from RHS to LHS, changing it's sign,

 \longmapsto\sf3x - 2x = 6

Subtracting 2x from 3x,

 \longmapsto\sf x = 6

  • The value of x is 6.

--------------------

 \underline{\rm Verification :-}

To check our answer, let's put 6 in the place of x and see whether LHS = RHS.

 \underline{ \underline{ \mathfrak{Substituting \:  the \:  value \:  of \:  x,}}}

LHS

 \Rightarrow \bigg(\bf\dfrac{6}{2}  \bigg)

Removing the brackets,

 \Rightarrow \bf \dfrac{6}{2}

Reducing the fraction,

 \Rightarrow \bf \dfrac{3}{1}

RHS

 \Rightarrow \bigg(\bf\dfrac{6}{3}  \bigg) + 1

Removing the brackets,

 \Rightarrow \bf \dfrac{6}{3}  + 1

Let's add 6/3 and 1.

 \Rightarrow \bf\dfrac{6}{3}  +  \dfrac{1}{1}

The LCM of 3 and 1 is 3, so multiplying the fractions using their denominators,

 \Rightarrow \bf \dfrac{6 \times 1 + 1 \times 3}{3}

On simplifying,

 \Rightarrow \bf\dfrac{6 + 3}{3}

Adding 3 to 6,

  \Rightarrow\bf\dfrac{9}{3}

Reducing the fraction,

  \Rightarrow\bf\dfrac{3}{1}

Since LHS = RHS,

Hence verified!!

Similar questions