Math, asked by vedprakashsingh, 1 year ago

x-2/x-3+x-4/x-5=10/3

Answers

Answered by mysticd
13

Answer:

 x = 6 \: Or \: x = \frac{7}{2}

Step-by-step explanation:

\frac{x-2}{x-3}+\frac{x-4}{x-5}=\frac{10}{3}

\implies \frac{(x-2)(x-5)+(x-4)(x-3)}{(x-3)(x-5)}=\frac{10}{3}

\implies \frac{x^{2}-5x-2x+10+x^{2}-3x-4x+12}{x^{2}-5x-3x+15}=\frac{10}{3}

\frac{2x^{2}-14x+22}{x^{2}-8x+15}=\frac{10}{3}

\implies \frac{2(x^{2}-7x+11}{x^{2}-8x+15}=\frac{10}{3}

\implies \frac{(x^{2}-7x+11}{x^{2}-8x+15}=\frac{10}{2\times 3}

\implies \frac{(x^{2}-7x+11}{x^{2}-8x+15}=\frac{5}{ 3}

\implies 3(x^{2}-7x+11)=5(x^{2}-8x+15)

\implies 3x^{2}-21x+33=5x^{2}-40x+75

\implies 0 = 5x^{2}-40x+75-3x^{2}+21x-33

\implies 2x^{2}-19x+42=0

\implies 2x^{2}-12x-7x+42=0

\implies 2x(x-6)-7(x-6)=0

\implies (x-6)(2x-7)=0

\implies x-6 = 0 \: Or \: 2x-7 =0

\implies x = 6 \: Or \: x = \frac{7}{2}

Therefore,

 x = 6 \: Or \: x = \frac{7}{2}

•••♪

Similar questions