Math, asked by Sonia109, 3 months ago


x-2/x-3 + x-4/x-5 = 3⅓, x ≠ 3, 5

Lesson :- Quadratic equations​

Answers

Answered by MirzaWajidRaza
1

Hope this will be helpful to you.

Sweet dreams.

Attachments:
Answered by BrainlyTwinklingstar
3

Answer

Given that,

\sf \dashrightarrow \dfrac{x - 2}{x - 3} + \dfrac{x - 4}{x - 5} = \dfrac{10}{3}

 \sf \dashrightarrow \dfrac{(x - 2)(x - 5) + (x - 4)(x - 3)}{(x - 3)(x - 5)}  =  \dfrac{10}{3}

 \sf \dashrightarrow \dfrac{({x}^{2} - 7x + 10) + ({x}^{2} - 7x + 12)}{({x}^{2} - 8x + 15)}  =  \dfrac{10}{3}

 \sf \dashrightarrow \dfrac{({2x}^{2} - 14x + 22)}{({x}^{2} - 8x + 15)} = \dfrac{10}{3}

Cross multiply the fractions.

 \sf \dashrightarrow 3 \: ({2x}^{2} - 14x + 22) = 10 \: ({x}^{2} - 8x + 15)

 \sf \dashrightarrow {6x}^{2} - 42x + 66 = {10x}^{2} - 80x + 150

 \sf \dashrightarrow {4x}^{2} - 38x + 84 = 0

 \sf \dashrightarrow {2x}^{2} - 19x + 42 = 0

 \sf \dashrightarrow {2x}^{2} - 12x - 7x + 42 = 0

 \sf \dashrightarrow 2x \: (x - 6) - 7 \: (x - 6) = 0

 \sf \dashrightarrow (x - 6)(2x - 7) = 0

 \sf \dashrightarrow x - 6 = 0 \:  \: or \:  \: 2x - 7 = 0

 \sf \dashrightarrow x = 6 \:  \: or \:  \: x = \dfrac{7}{2}

Thus, 6 and \sf \dfrac{7}{2} are the roots of the given equation.

Similar questions