Math, asked by Iconmani, 18 days ago

x^2 -x(4+ ✓2) +4✓2 = 0​

Answers

Answered by sajan6491
13

 \tt{x^2 -x(4+  \sqrt{2} ) +4 \sqrt{2}  = 0}

 \tt{{x}^{2}-(4+\sqrt{2})x+4\sqrt{2}=0}

 \tt{x=\frac{4+\sqrt{2}+\sqrt{2(9-4\sqrt{2})}}{2},\frac{4+\sqrt{2}-\sqrt{2(9-4\sqrt{2})}}{2}}

 \small \tt{x=\frac{1}{\sqrt{2}}+\frac{4+\sqrt{2(9-4\sqrt{2})}}{2},\frac{1}{\sqrt{2}}+\frac{4-\sqrt{2(9-4\sqrt{2})}}{2}}

Decimal Form: 4, 1.414214

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm :\longmapsto\: {x}^{2} - x(4 +  \sqrt{2}) + 4 \sqrt{2} = 0

can be rewritten as

\rm :\longmapsto\: {x}^{2} - 4x  -  \sqrt{2}x + 4 \sqrt{2} = 0

\rm :\longmapsto\:x(x - 4) -  \sqrt{2}(x -  4) = 0

\rm :\longmapsto\:(x - 4)(x -  \sqrt{2}) = 0

\rm :\longmapsto\:x - 4 = 0 \:  \:  \:  \: or \:  \:  \:  \:  \: x -  \sqrt{2}= 0

\bf\implies \:x = 4 \:  \:  \:  \: or \:  \:  \:  \: x =  \sqrt{2}

Verification

\purple{\rm :\longmapsto\:When \: x = 4}

The given equation is

 \purple{\rm :\longmapsto\: {x}^{2} - x(4 +  \sqrt{2}) + 4 \sqrt{2} = 0}

On substituting the value of x, we get

 \purple{\rm :\longmapsto\: {4}^{2} - 4(4 +  \sqrt{2}) + 4 \sqrt{2} = 0}

 \purple{\rm :\longmapsto\: 16 - 16 - 4 \sqrt{2}  + 4 \sqrt{2} = 0}

 \purple{\rm\implies \:0 = 0}

Hence, Verified

\red{\rm :\longmapsto\:When \: x =  \sqrt{2}}

The given equation is

 \red{\rm :\longmapsto\: {x}^{2} - x(4 +  \sqrt{2}) + 4 \sqrt{2} = 0}

On substituting the value of x, we get

 \red{\rm :\longmapsto\: {( \sqrt{2} )}^{2} -  \sqrt{2} (4 +  \sqrt{2}) + 4 \sqrt{2} = 0}

 \red{\rm :\longmapsto\: 2 -  4\sqrt{2} - 2 + 4 \sqrt{2} = 0}

 \red{\rm\implies \:0 = 0}

Hence, Verified

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions