Math, asked by rajatbhalse348, 1 month ago

x-2/x-4 +x-6/x-8 = 20/3​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\dfrac{x - 2}{x - 4}  + \dfrac{x - 6}{x - 8}  = \dfrac{20}{3}

\rm :\longmapsto\:\dfrac{x - 4 + 2}{x - 4}  + \dfrac{x - 8 + 2}{x - 8}  = \dfrac{20}{3}

\rm :\longmapsto\:\dfrac{x - 4}{x - 4}  + \dfrac{2}{x - 4}  + \dfrac{2}{x - 8}   + \dfrac{x - 8}{x - 8}   =   \dfrac{20}{3}

\rm :\longmapsto\:1 + \dfrac{2}{x - 4}  + 1 + \dfrac{2}{x - 8}  = \dfrac{20}{3}

\rm :\longmapsto\:\dfrac{2}{x - 4} + \dfrac{2}{x - 8}  = \dfrac{20}{3}  - 2

\rm :\longmapsto\:\dfrac{2}{x - 4} + \dfrac{2}{x - 8}  = \dfrac{20 - 6}{3}

\rm :\longmapsto\:\dfrac{2}{x - 4} + \dfrac{2}{x - 8}  = \dfrac{14}{3}

\rm :\longmapsto\:\dfrac{1}{x - 4} + \dfrac{1}{x - 8}  = \dfrac{7}{3}

\rm :\longmapsto\:\dfrac{x - 8 + x - 4}{(x - 4)(x - 8)}  = \dfrac{7}{3}

\rm :\longmapsto\:\dfrac{2x - 12}{ {x}^{2} - 4x - 8x + 32 }  = \dfrac{7}{3}

\rm :\longmapsto\:\dfrac{2x - 12}{ {x}^{2} - 12x + 32 }  = \dfrac{7}{3}

\rm :\longmapsto\: {7x}^{2} - 84x + 224 = 6x - 36

\rm :\longmapsto\: {7x}^{2} - 90x + 260 =0

Using Quadratic formula, the values of 'x' is given by

\rm :\longmapsto\:x = \dfrac{ - b \:  \pm \:  \sqrt{ {b}^{2} - 4ac}}{2a}

Here,

  • a = 7

  • b = - 90

  • c = 260

On substituting the values in above formula, we get

\rm :\longmapsto\:x = \dfrac{ - ( - 90) \:  \pm \:  \sqrt{ {( - 90)}^{2} - 4 \times 7 \times 260}}{2 \times 7}

\rm :\longmapsto\:x = \dfrac{ 90\:  \pm \:  \sqrt{ 8100 - 7280}}{14}

\rm :\longmapsto\:x = \dfrac{ 90\:  \pm \:  \sqrt{ 820}}{14}

\rm :\longmapsto\:x = \dfrac{ 90\:  \pm \:  \sqrt{ 2 \times 2 \times 205}}{14}

\rm :\longmapsto\:x = \dfrac{ 90\:  \pm \:  2\sqrt{205}}{14}

\rm :\longmapsto\:x = \dfrac{ 45\:  \pm \:  \sqrt{205}}{7}

 \rm \: \therefore\:\boxed{ \red{ \bf \: x = \dfrac{45+\sqrt{205} }{7}}} \:  \:  \: or \:  \:  \: \boxed{ \red{ \bf \: x = \dfrac{45 -  \sqrt{205}}{7}}}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac

Similar questions