Math, asked by nithin2008jv, 18 days ago

X^2+X+7 can anyone say the answer

Answers

Answered by steffiaspinno
0

The roots of the equation x²+x+7 are \alpha =\frac{-1+3i\sqrt{3 } }{2}   and \beta =\frac{-1-3i\sqrt{3 } }{2}  

Explanation:

Given:

x²+x+7

To find:

The roots of the equation

Formula:

\alpha =\frac{-b+\sqrt{b^{2}-4ac } }{2a}

\beta =\frac{-b-\sqrt{b^{2}-4ac}  }{2a}

Solution:

==> The equation is x²+x+7

==> a = coefficient of x²

==> b = coefficient of x

==> c = constant

==> a = 1

==> b = 1

==> c = 7

==> Apply the values in the formula

==> \alpha =\frac{-b+\sqrt{b^{2}-4ac } }{2a}

==>  \alpha =\frac{-1+\sqrt{1^{2}-4(1)(7) } }{2(1)}

==> \alpha =\frac{-1+\sqrt{1-4(7) } }{2}

==> \alpha =\frac{-1+\sqrt{1-28 } }{2}

==> \alpha =\frac{-1+\sqrt{-27 } }{2}

==> we know that, i²=-1

==> \alpha =\frac{-1+\sqrt{-1\times27 } }{2}

==> \alpha =\frac{-1+\sqrt{i^{2} \times3\times3\times3 } }{2}

==> \alpha =\frac{-1+3i\sqrt{3 } }{2}  

==> \beta =\frac{-b-\sqrt{b^{2}-4ac } }{2a}

==>  \beta =\frac{-1-\sqrt{1^{2}-4(1)(7) } }{2(1)}

==> \beta =\frac{-1-\sqrt{1-4(7) } }{2}

==> \beta =\frac{-1-\sqrt{1-28 } }{2}

==> \beta =\frac{-1-\sqrt{-27 } }{2}

==> we know that, i²=-1

==> \beta =\frac{-1-\sqrt{-1\times27 } }{2}

==> \beta =\frac{-1-\sqrt{i^{2} \times3\times3\times3 } }{2}

==> \beta =\frac{-1-3i\sqrt{3 } }{2}  

The roots of the equation x²+x+7 are \alpha =\frac{-1+3i\sqrt{3 } }{2}   and \beta =\frac{-1-3i\sqrt{3 } }{2}  

Similar questions