Math, asked by tannusonakiya, 1 year ago

(x^2+y^2)(a^2+b^2)=(ax+by)2 prove that x/a=y/b

Answers

Answered by Anonymous
21
\underline{\mathfrak{\huge{The\:Question:}}}

Given that :-

\tt{(x^{2} + y^{2})(a^{2} + b^{2}) = (ax + by)^{2}}

Prove that :-

\tt{\frac{x}{a} = \frac{y}{b}}\\

\underline{\mathfrak{\huge{Your\:Answer:}}}

Given :-

\tt{(x^{2} + y^{2})(a^{2} + b^{2}) = (ax + by)^{2}}

To Prove :-

\tt{\frac{x}{a} = \frac{y}{b}}\\

Proof :-

\tt{(x^{2} + y^{2})(a^{2} + b^{2}) = (ax + by)^{2}}

Multiply and open the brackets at the L.H.S. ( Left Hand Side ) :-

=》 \tt{x^{2}a^{2} + x^{2}b^{2} + y^{2}a^{2} + y^{2}b^{2} = (ax + by)^{2}}

Now, use the identity:-

\tt{(a+b)^{2} = a^{2} + b^{2} + 2ab}

in the R.H.S. ( Right Hand Side ) of the formed equation :-

=》 \tt{x^{2}a^{2} + x^{2}b^{2} + y^{2}a^{2} + y^{2}b^{2} = a^{2}x^{2} + b^{2}y^{2} + 2axby}

Now, cancel the common terms at R.H.S. and L.H.S. :-

=》 \tt{b^{2}x^{2} + y^{2}a^{2} = 2axby}

Now, take (2axby) to the L.H.S. and then solve :-

=》 \tt{b^{2}x^{2} + y^{2}a^{2} - 2axby = 0}

Now, if we see, the identity :-

\tt{a^{2} + b^{2} - 2ab = (a-b)^{2}}

can be used here to simplify the equation :-

=》 \tt{(bx - ay)^{2} = 0}

Now, take square root at both the sides :-

=》 \tt{bx- ay = 0}

Take (ay) to the R.H.S. :-

=》 \tt{bx = ay}

Take (b) to the R.H.S. and (a) to the L.H.S. and then, you'll get your answer :-

=》 \tt{\frac{x}{a} = \frac{y}{b}}\\

\mathfrak{Hence\:Proved!}

tannusonakiya: thank you very much
Anonymous: Welcome! ^-^'
Similar questions