Math, asked by wajhatulhassan4, 2 months ago

(x^2+y^2+x)dx+xydy=0​

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

( {x}^{2}  +  {y}^{2}  + x)dx + xydy = 0 \\

 \implies \frac{dy}{dx}   + \frac{y}{x}   =  -  \frac{( {x}^{2}   + x)}{xy } \\

 \implies y\frac{dy}{dx}   + \frac{ {y}^{2} }{x}   =  -  \frac{( {x}^{2}   + x)}{x } \\

Let \:  \:  {y}^{2}  = v \\  \implies2y \frac{dy}{dx}  =  \frac{dv}{dx}  \\  \implies \: y \frac{dy}{dx}  =  \frac{1}{2}  \frac{dv}{dx}

 \implies  \frac{1}{2} \frac{dv}{dx}   + \frac{ v }{x}   =  -  \frac{( {x}^{2}   + x)}{x } \\

 \implies   \frac{dv}{dx}   + \frac{2 v }{x}   =  - 2( x   + 1) \\

I.F. =  {e}^{ \int \frac{2}{x} dx}  =  {e}^{2 ln(x) } =  {e}^{ ln( {x}^{2} ) }   =  {x}^{2} \\

Now,

v. {x}^{2}  =  \int {x}^{2}( - 2x - 2)dx \\

 \implies \: v. {x}^{2}  =  -  \int {x}^{2}( 2x  +  2)dx \\

 \implies \: v. {x}^{2}  =  -  2\int(  {x}^{3}  + {x}^{2}) dx \\

 \implies \: v. {x}^{2}  =  -  \frac{1}{2}   {x}^{4}  -  \frac{2}{3}   {x}^{3} + C \\

 \implies \:  {(xy)}^{2}  =  -  \frac{1}{2}   {x}^{4}  -  \frac{2}{3}   {x}^{3} + C \\

Similar questions