Math, asked by oy3403339, 5 hours ago

(x^(2)+y^(2))/(xy)-(x^(2))/(y(x+y))-(y^(2))/(x(x+y))

Answers

Answered by 219394
1

Answer:

Step-by-step explanation:

Given , Differential  Equation  is  

  (x  

2

−yx  

2

)dy+(y  

2

+xy  

2

)dx=0    

   

  This   can  be  Simplified   as  

(yx  

2

−x  

2

)dy=(y  

2

+xy  

2

)dx

x  

2

(y−1)dy=y  

2

(1+x)dx        

 

y  

2

 

dy(y−1)

=  

x  

2

 

dx(1+x)

 

 

Now   On   Integrating  both  side , we   get  

∫  

y  

2

 

dy(y−1)

=∫  

x  

2

 

dx(1+x)

 

     

∫[  

y

1

−  

y  

2

 

1

]dy=∫[  

x

1

+  

x  

2

 

1

]dx

 

∫[  

y

dy

−  

y  

2

 

dy

]=∫[  

x

dx

+  

x  

2

 

dx

]

 

ln∣y∣−  

y

1

=ln∣x∣−  

x

1

+lnC

ln∣y∣−ln∣x∣−lnC=  

y

1

−  

x

1

 

ln[  

c∣x∣

∣y∣

]=  

xy

x−y

 

Video ExplanatGiven , Differential  Equation  is  

  (x  

2

−yx  

2

)dy+(y  

2

+xy  

2

)dx=0    

   

  This   can  be  Simplified   as  

(yx  

2

−x  

2

)dy=(y  

2

+xy  

2

)dx

x  

2

(y−1)dy=y  

2

(1+x)dx        

 

y  

2

 

dy(y−1)

=  

x  

2

 

dx(1+x)

 

 

Now   On   Integrating  both  side , we   get  

∫  

y  

2

 

dy(y−1)

=∫  

x  

2

 

dx(1+x)

 

     

∫[  

y

1

−  

y  

2

 

1

]dy=∫[  

x

1

+  

x  

2

 

1

]dx

 

∫[  

y

dy

−  

y  

2

 

dy

]=∫[  

x

dx

+  

x  

2

 

dx

]

 

ln∣y∣−  

y

1

=ln∣x∣−  

x

1

+lnC

ln∣y∣−ln∣x∣−lnC=  

y

1

−  

x

1

 

ln[  

c∣x∣

∣y∣

]=  

xy

x−y

 

Similar questions