Math, asked by anuveshkumars5465, 1 year ago

X^2+y^2+z^2=xy+yz+zx then the value of (x^2/yz)+(y^2/zx)+(z^2/xy) is ?

Answers

Answered by nivedita71
4

Answer:

hence proved

Step-by-step explanation:

+y+z=6

xy+yz+zx=12

2) We know that,

\begin{lgathered}{(x + y + z)}^{2} = {x}^{2} + {y}^{2} + {z}^{2} + 2(xy + yz + zx) \\ = > {6}^{2} = {x}^{2} + {y}^{2} + {z}^{2} + 2 \times 12 \\ = > {x}^{2} + { y }^{2} + {z}^{2} = 36 - 24 = 12\end{lgathered}

(x+y+z)

2

=x

2

+y

2

+z

2

+2(xy+yz+zx)

=>6

2

=x

2

+y

2

+z

2

+2×12

=>x

2

+y

2

+z

2

=36−24=12

3) And,

We also know that,

\begin{lgathered}{x}^{3} + {y}^{3} + {z}^{3} - 3xyz = (x + y + z) \\ \times ( {x}^{2} + {y}^{2} + {z}^{2} - xy - yz - zx) \\ = > 6 \times (12 - 12) = 0 \\ = > {x}^{3} + {y}^{3} + {z}^{3} - 3xyz = 0 \\ = > {x}^{3} + {y}^{3} + {z}^{3} = 3xyz\end{lgathered}

x

3

+y

3

+z

3

−3xyz=(x+y+z)

×(x

2

+y

2

+z

2

−xy−yz−zx)

=>6×(12−12)=0

=>x

3

+y

3

+z

3

−3xyz=0

=>x

3

+y

3

+z

3

=3xyz

Hence Proved.

Similar questions