Math, asked by kenny80, 7 months ago

x^2+y(x+1)=17,y^2+x(y+1)=13
​brainly 360 plz help meeee!​ this is important and not for free point if u answer something i will REPORT YOUR QUESTION

Answers

Answered by Anonymous
7

Answer:

\sf{The \ values \ of \ x \ and \ y \ are \ \dfrac{-23}{7}}

\sf{and \ \dfrac{-19}{7} \ respectively \ or \ values}

\sf{of \ x \ and \ y \ are \ 3 \ and \ 2 \ respectively. }

Given:

\sf{The \ given \ equations \ are \ x^{2}+y(x+1)=17}

\sf{and \ y^{2}+x(y+1)=13}

To find:

\sf{The \ value \ of \ x \ and \ y.}

Solution:

\sf{x^{2}+y(x+1)=17...(1)}

\sf{y^{2}+x(y+1)=13...(2)}

\sf{Add \ equations \ (1) \ and \ (2), \ we \ get}

\sf{x^{2}+y(x+1)=17}

\sf{+}

\sf{y^{2}+x(y+1)=13}

____________________

\sf{x^{2}+y^{2}+y(x+1)+x(y+1)=30}

\sf{\therefore{x^{2}+y^{2}+xy+y+xy+x=30}}

\sf{\therefore{x^{2}+y^{2}+2xy+x+y=30}}

\boxed{\sf{a^{2}+b^{2}+2ab=(a+b)^{2}...using \ identity}}

\sf{\therefore{(x+y)^{2}+(x+y)=30}}

\sf{Substitute \ x+y=p, \ we \ get}

\sf{p^{2}+p=30}

\sf{\therefore{p^{2}+p-30=0}}

\sf{\therefore{p^{2}+6p-5p-30=0}}

\sf{\therefore{p(p+6)-5(p+6)=0}}

\sf{\therefore{(p+6)(p-5)=0}}

\sf{\therefore{p=-6 \ or \ p=5}}

\sf{When \ p=-6}

\sf{x+y=-6}

\sf{\therefore{y=-6-x...(3)}}

\sf{Substituting \ y=-6-x \ in \ equation(2), \ we \ get}

\sf{(-6-x)^{2}+x(-6-x+1)=13}

\sf{\therefore{36+12x+x^{2}-6x-x^{2}+x=13}}

\sf{\therefore{7x=13-36}}

\sf{\therefore{7x=-23}}

\boxed{\sf{\therefore{x=\dfrac{-23}{7}}}}

\sf{Substitute \ x=\dfrac{-23}{7} \ in \ equation(3), \ we \ get}

\sf{y=-6-(\dfrac{-23}{7})}

\sf{\therefore{y=-6+\dfrac{23}{7}}}

\sf{\therefore{y=\dfrac{-42+23}{7}}}

\boxed{\sf{\therefore{y=\dfrac{-19}{7}}}}

\sf{When \ p=5, \ we \ get}

\sf{x+y=5}

\sf{\therefore{y=5-x...(4)}}

\sf{Substitute \ y=5-x \ in \ equation(2), \ we \ get}

\sf{(5-x)^{2}+x(5-x+1)=13}

\sf{\therefore{25-10x+x^{2}+5^{2}-x^{2}+x=13}}

\sf{\therefore{-4x=13-25}}

\sf{\therefore{-4x=-12}}

\sf{\therefore{x=\dfrac{-12}{-4}}}

\boxed{\sf{\therefore{x=3}}}

\sf{Substitute \ x=3 \ in \ equation(4), \ we \ get}

\sf{y=5-3}

\boxed{\sf{\therefore{y=2}}}

\sf\purple{\tt{\therefore{The \ values \ of \ x \ and \ y \ are \ \dfrac{-23}{7}}}}

\sf\purple{\tt{and \ \dfrac{-19}{7} \ respectively \ or \ values}}

\sf\purple{\tt{of \ x \ and \ y \ are \ 3 \ and \ 2 \ respectively. }}

Answered by itzRealQueen
6

Answer is y=2 approximately

Similar questions