Physics, asked by saiful9, 1 year ago

x)
24.
A particle moves in a circle with
speed of 15 m/s. The radiu
circle is 2 m. Determine the cent
acceleration of the particle,
[Ans: 112.5 ms
Can you reca
1. What are differe​

Answers

Answered by ShivamKashyap08
13

\huge{\bold{\underline{\underline{....Answer....}}}}

\huge{\bold{\underline{Given:-}}}

Velocity(v) = 15 m/s.

Radius(r) = 2m.

\huge{\bold{\underline{Explanation:-}}}

As we know,

\large{\bold{a_{c} = \frac{v^2}{r}}}

Substituting the values.

\large{a_{c} = \frac{(15)^2}{2}}

\large{a_c = \frac{225}{2}}

\huge{\boxed{\boxed{a_c = 112.5 \: m/s^2}}}

Additional formulas:-

\large{\bold{ \star a_c = \omega^2r}}

For Tangential acceleration

\large{\bold{ \star a_T = \frac{dv}{dt}}}

Total acceleration is given by:-

\large{\bold{ \star a = \sqrt{(a_c)^2 + (a_T)^2}}}

Answered by lAravindReddyl
14

Answer:-

\bold{a_c = 112.5 m{s}^{-2}}

Explanation:-

Given:-

  • v (velocity) = 15m/s
  • r (radius) = 2m

To Find:-

Acceleration

Solution:-

W.k.t

\boxed{\bold{a_c =\dfrac{{v}^{2}}{r}}}

{\rightarrow}a_c =\dfrac{{15}^{2}}{2}

{\rightarrow}a_c =\dfrac{225}{2}

\bold{{\rightarrow}a_c = 112.5 m{s}^{-2}}

Similar questions