Math, asked by ashishsaikia092, 11 hours ago

x^24y^14=(x+y)^40 find dy/dx​

Answers

Answered by vikkiain
0

Answer:

\frac{dy}{dx}  =  \frac{y(16x - 24y)}{x(14x - 26y)}

Step-by-step explanation:

 {x}^{24} {y}^{14}  = (x + y)^{2}  \\Differentiating  \:  \: with \:  \:  respect  \:  \: to  \:  \: X  \\   {x}^{24}.14 {y}^{13}. \frac{dy}{dx}  + 24 {x}^{23}. {y}^{14}  = 40(x + y) ^{39}.(1 +  \frac{dy}{dx} ) \\  {x}^{24}. {y}^{14} ( \frac{14}{y} . \frac{dy}{dx} +  \frac{24}{x}  ) = 40(x + y) ^{39}.(1 +  \frac{dy}{dx} )  \\ (x + y)^{40}( \frac{14}{y} . \frac{dy}{dx} +  \frac{24}{x}  ) = 40(x + y) ^{39} .(1 +  \frac{dy}{dx} ) \\ (x + y)( \frac{14}{y} . \frac{dy}{dx} +  \frac{24}{x}  ) = 40(1 +  \frac{dy}{dx} ) \\  \frac{14x}{y}. \frac{dy}{dx} + 24 + 14 .\frac{dy}{dx}  +  \frac{24y}{x}  = 40 + 40. \frac{dy}{dx}  \\ \frac{14x}{y}. \frac{dy}{dx} + 14 .\frac{dy}{dx}   -  40. \frac{dy}{dx} =40 - 24  -  \frac{24y}{x}  \\  \frac{dy}{dx}( \frac{14x}{y}   - 26) = 16 -  \frac{24y}{x}  \\ \frac{dy}{dx}(  \frac{14x - 26y}{y} ) =  \frac{16x - 24y}{x}  \\  \frac{dy}{dx}  = \frac{16x - 24y}{x} \times  \frac{y}{14x - 26y}  \\  \frac{dy}{dx}  =  \frac{y(16x - 24y)}{x(14x - 26y)}

Similar questions