Math, asked by Ssudhapandey10, 4 months ago

(x-2a)(x-2b)=4ab
find the nature of the roots

Answers

Answered by bhavadharini0
0

Step-by-step explanation:

Given equation is:-

(

(x - 2a)(x - 2b) = 4ab \\  {x}^{2}  - 2bx - 2ax + 2ab - 4ab = 0 \\  {x}^{2}  - (2b + 2a)x - 2ab = 0 \\  {b}^{2}  - 4ac = ( - (2b + 2a)) {}^{2}  - 4(1)( - 2ab) \\  = 4 {b}^{2}  + 8ab + 4 {a}^{2}  + 8ab \\  = 4 {a}^{2}  + 16ab + 4 {b}^{2}  \\  = 4(a {}^{2}  + 4ab +  {b}^{2} )  \\  > 0

As discriminant b^2 - 4ac is greater than zero,the roots are real and unequal.

Answered by Mabelrose
14

Answer:

 \large \purple{Answer}

Nature of rootsↆ

(x−2a)(x−2b)=4ab

⇒ x 2 −2bx−2ax+4ab=4ab

⇒ x 2 −2(a+b)x=0

⇒ On comparing with,

##ax^2+bx+c=0$$

⇒ We get, a=1,b=−2(a+b),c=0

⇒ Discriminant of the quadratic,equation =b 2 −4ac

⇒ [−(a+b)] 2 −4×1×0

⇒ (a+b) 2

∴ b 2 −4ac>0

Thus, roots are real and distinct.

 \large \orange{Mabelrose♡︎}

Similar questions