Math, asked by sahibha9964, 3 days ago

x=2cost -cos2t y=2sint -sin2t find dy/dx

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that,

\rm \: x = 2cost - cos2t \\

and

\rm \: y = 2sint - sin2t \\

Now, Consider

\rm \: x = 2cost - cos2t \\

On differentiating both sides w. r. t. t, we get

\rm \: \dfrac{d}{dt}x = \dfrac{d}{dt}(2cost - cos2t) \\

\rm \: \dfrac{dx}{dt} = 2\dfrac{d}{dt}cost -  \dfrac{d}{dt}cos2t \\

\rm \: \dfrac{dx}{dt} =  - 2sint - ( - 2sin2t) \\

\rm \: \dfrac{dx}{dt} =  - 2sint  +  2sin2t \\

\rm \: \dfrac{dx}{dt} = 2( - sint  +  sin2t )\\

We know,

\boxed{\sf{  \:sinx -   siny = 2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg] \: }} \\

So, using this result, we get

\rm \: \dfrac{dx}{dt} = 4cos\bigg[\dfrac{2t + t}{2} \bigg]sin\bigg[\dfrac{2t - t}{2} \bigg] \\

\rm \: \dfrac{dx}{dt} = 4cos\bigg[\dfrac{3t}{2} \bigg]sin\bigg[\dfrac{t}{2} \bigg] \\

Now, Consider

\rm \: y = 2sint - sin2t \\

On differentiating both sides w. r. t. t, we get

\rm \:  \dfrac{d}{dt}y =  \dfrac{d}{dt}(2sint - sin2t) \\

\rm \:  \dfrac{dy}{dt} = 2 \dfrac{d}{dt}sint -  \dfrac{d}{dt}sin2t \\

\rm \:  \dfrac{dy}{dt} = 2cost - 2cos2t \\

\rm \:  \dfrac{dy}{dt} = 2(cost - cos2t) \\

We know,

\boxed{\sf{  \:cosx - cosy = 2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{y - x}{2} \bigg] \: }}

So, using this result, we get

\rm \: \dfrac{dy}{dt} = 4sin\bigg[\dfrac{2t + t}{2} \bigg]sin\bigg[\dfrac{2t - t}{2} \bigg] \\

\rm \: \dfrac{dy}{dt} = 4sin\bigg[\dfrac{3t}{2} \bigg]sin\bigg[\dfrac{ t}{2} \bigg] \\

Thus,

\rm \: \dfrac{dy}{dx} \\

\rm \: =  \:  \:  \dfrac{dy}{dt} \div  \dfrac{dx}{dt} \\

\rm \: = 4sin\bigg[\dfrac{3t}{2} \bigg]sin\bigg[\dfrac{ t}{2} \bigg]  \:  \div  \: 4cos\bigg[\dfrac{3t}{2} \bigg]sin\bigg[\dfrac{ t}{2} \bigg]\\

\rm \: =  \:  \: tan\bigg(\dfrac{3t}{2}  \bigg)  \\

Hence,

\rm\implies \:\rm \:\dfrac{dy}{dx} =  \:  \: tan\bigg(\dfrac{3t}{2}  \bigg)  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formulae Used :-

\boxed{\sf{  \:\rm \: \dfrac{d}{dx}sinx = cosx \: }} \\

\boxed{\sf{  \:\rm \: \dfrac{d}{dx}cosx =  \:  -  \: sinx \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by maheshtalpada412
2

Step-by-step explanation:

 \color{brown} \begin{aligned}  \tt\frac{d x}{d t} & \tt=-2 \sin t+2 \sin 2 t \\  \\ & \tt=2(\sin 2 t-\sin t) \\ \\  & \tt=2\left(2 \cos \frac{3 t}{2} \sin \frac{t}{2}\right) \\ \\ & \tt =4 \cos \frac{3 t}{2} \sin \frac{t}{2} \\  \\  \tt \: y & \tt=2 \sin t-\sin 2 t \end{aligned}

\color{red} \begin{aligned}  \tt\frac{d y}{d x} & \tt=2 \cos t-2 \cos 2 t \\ \\  & \tt=2(\cos t-\cos 2 t) \\ \\  & \tt=2\left(2 \sin \frac{3 t}{2} \sin \frac{t}{2}\right) \\  \\ & \tt=4 \sin \frac{3 t}{2} \sin \frac{t}{2} \end{aligned}

\color{darkcyan} \begin{aligned}  \tt\frac{d y}{d x} & \tt=\frac{d y / d t}{d x / d t} \\ \\  & \tt=\dfrac{4 \sin \dfrac{3 t}{2} \sin \dfrac{t}{2}}{4 \cos \dfrac{3 t}{2} \sin \dfrac{t}{2}} \\ \\  &  \blue{\tt=\tan \frac{3 t}{2} }  \rule{1pt}{2pt}\end{aligned}

Similar questions