X^2logx = 10x^2 solve
Answers
Given: x^(2 logx) = 10x²
To find: Solve the above expression.
Solution:
- Now as we have given that x^(2 logx) = 10x², so now we need take log on both sides.
- So taking log on both sides, we get:
log { x^(2 logx) } = log { 10x² }
- Now using the property log ab = log a + log b
2 log x × log x = log 10 + log (x²)
- Now using the property log a^b = b log a
2 log x × log x = log 10 + 2 log x
- Let log x = k, then:
2k² = 2k + 1 .....(log 10 = 1)
2k² - 2k - 1 = 0
- Now k = -b±√D / 2a
k = 2±√4-4(2)(-1) / 4
k = 2±√4+8 / 4
k = 2±√12 / 4
k = 2±2√3 / 4
k = 1±√3/2
- So now re substituting the terms we get:
log x = 1±√3/2
x = e^1±√3/2
Answer:
So the value of x is e^1+√3/2 or e^1-√3/2.
Answer Of Problem;
x = 10^1±√3/2
Logarithmic Properties Used-
• [loga(b)=n] → (aⁿ=b)..(1)
• loga(b)ⁿ = nloga(b)..(2)
•loga(m)+loga(n) = loga(mn)..(3)
Here Is Your Solution;
Taking Log Both The Sides-
log(x^2logx) = log10x²
2logx•logx = log(10•x²) ..[By (2)]
2logx•logx = log10+logx² ..[By (3)]
2logx•logx = 1 + 2logx. ..[By (2)]
Let logx=a, then
2a²=1+2a
2a²-2a-1=0
Using Quadratic Formula;
x= (-b±√b²-4ac)/2a
x=[-(-2)±√(-2)²-4(2)(-1)]/2(2)
x=[2±√12]/4
x=[1±√3]/2
logx= (1±√3)/2
Therefore, [x= 10^(1±√3)/2]
Thanku For Viewing!
Hope It Helps!