X^2n-3×(x^2)^n+1 upon (x^4)^-3 = (x^3)^3÷(x^6)^-3
Answers
Answered by
1
Answer:
∴
(x
3
)
2n+1
.x
n(2n+1)
x
2n+3
.x
(2n+1)(n+2)
=\dfrac{x^{2n+3+(2n+1)(n+2)}}{x^{6n+3+n(2n+1)}}=
x
6n+3+n(2n+1)
x
2n+3+(2n+1)(n+2)
=\dfrac{x^{2n+3+2n^{2}+5n+2}}{x^{6n+3+2n^{2}+n}}=
x
6n+3+2n
2
+n
x
2n+3+2n
2
+5n+2
=\dfrac{x^{2n^{2}+7n+5}}{x^{2n^{2}+7n+3}}=
x
2n
2
+7n+3
x
2n
2
+7n+5
=x^{2n^{2}+7n+5-2n^{2}-7n-3}=x
2n
2
+7n+5−2n
2
−7n−3
=x^{2}=x
2
\Rightarrow \dfrac{x^{2n+3}.x^{(2n+1)(n+2)}}{(x^{3})^{2n+1}.x^{n(2n+1)}}=x^{2}⇒
(x
3
)
2n+1
.x
n(2n+1)
x
2n+3
.x
(2n+1)(n+2)
=x
2
Similar questions