Math, asked by xkatyusha1, 3 months ago

X^2n-3×(x^2)^n+1 upon (x^4)^-3 = (x^3)^3÷(x^6)^-3

Answers

Answered by AdityaYeole
1

Answer:

(x

3

)

2n+1

.x

n(2n+1)

x

2n+3

.x

(2n+1)(n+2)

=\dfrac{x^{2n+3+(2n+1)(n+2)}}{x^{6n+3+n(2n+1)}}=

x

6n+3+n(2n+1)

x

2n+3+(2n+1)(n+2)

=\dfrac{x^{2n+3+2n^{2}+5n+2}}{x^{6n+3+2n^{2}+n}}=

x

6n+3+2n

2

+n

x

2n+3+2n

2

+5n+2

=\dfrac{x^{2n^{2}+7n+5}}{x^{2n^{2}+7n+3}}=

x

2n

2

+7n+3

x

2n

2

+7n+5

=x^{2n^{2}+7n+5-2n^{2}-7n-3}=x

2n

2

+7n+5−2n

2

−7n−3

=x^{2}=x

2

\Rightarrow \dfrac{x^{2n+3}.x^{(2n+1)(n+2)}}{(x^{3})^{2n+1}.x^{n(2n+1)}}=x^{2}⇒

(x

3

)

2n+1

.x

n(2n+1)

x

2n+3

.x

(2n+1)(n+2)

=x

2

Similar questions