Physics, asked by richa2304, 8 months ago

x=2t3-4t2+3t+4
find the Initial velocity and initial acceleration​

Answers

Answered by pulakmath007
20

\huge{\mathcal{\underline{\green{SOLUTION }}}}

x \:  = 2 {t}^{3}  - 4 { t}^{2}  + 3t - 4

 \implies \:  \frac{dx}{dt}  = v \:  = 6 {t}^{2}  - 8t + 3

 \implies \:  \frac{ {d}^{2}x }{d {t}^{2}} = 12t - 8

So

Initial velocity

6 \times  {0}^{2}  - 8 \times 0 + 3 = 3 \:  \: unit

Initial acceleration

 = 12 \times 0 - 8 =  - 8 \: unit

Answered by d687cyoyo
4

Answer:

x=2t3−4t2+3t−4

\implies \: \frac{dx}{dt} = v \: = 6 {t}^{2} - 8t + 3⟹dtdx=v=6t2−8t+3

\implies \: \frac{ {d}^{2}x }{d {t}^{2}} = 12t - 8⟹dt2d2x=12t−8

So

Initial velocity

6 \times {0}^{2} - 8 \times 0 + 3 = 3 \: \: unit6×02−8×0+3=3unit

Initial acceleration

= 12 \times 0 - 8 = - 8 \: unit=12×0−8=−8unit

Similar questions