Math, asked by pranathianukuri, 1 year ago

X-(2x+8/3)=1/4(x-(2-x)/6)-3

Answers

Answered by hunterp1977boy
1

Answer:x = 148/29 = 5.103

Step-by-step explanation:

     x-2*x+8/3-(1/4*(x-2-x/6)-3)=0  

Step by step solution :

Step  1  :

           x

Simplify   —

           6

Equation at the end of step  1  :

     8    1        x

 (-x+—)-((—•((x-2)-—))-3)  = 0  

     3    4        6

Step  2  :

Rewriting the whole as an Equivalent Fraction :

2.1   Subtracting a fraction from a whole  

Rewrite the whole as a fraction using  6  as the denominator :

               

                  x-2*x+8/3-(1/4*(x-2-x/6)-3)=0  

Step by step solution :

Step  1  :

           x

Simplify   —

           6

Equation at the end of step  1  :

     8    1        x

 (-x+—)-((—•((x-2)-—))-3)  = 0  

     3    4        6

Step  2  :

Rewriting the whole as an Equivalent Fraction :

2.1   Subtracting a fraction from a whole  

Rewrite the whole as a fraction using  6  as the denominator :

      x-2*x+8/3-(1/4*(x-2-x/6)-3)=0  

Step by step solution :

Step  1  :

           x

Simplify   —

           6

Equation at the end of step  1  :

     8    1        x

 (-x+—)-((—•((x-2)-—))-3)  = 0  

     3    4        6

Step  2  :

Rewriting the whole as an Equivalent Fraction :

2.1   Subtracting a fraction from a whole  

Rewrite the whole as a fraction using  6  as the denominator :

             x - 2     (x - 2) • 6

    x - 2 =  —————  =  ———————————

                       1                            6

Equation at the end of step  2  :

     8    1 (5x-12)

 (-x+—)-((—•———————)-3)  = 0  

     3    4    6    

Step  3  :

           1

Simplify   —

           4

Equation at the end of step  3  :

        8       1   (5x - 12)      

 (-x +  —) -  ((— • —————————) -  3)  = 0  

        3       4       6          

Step  4  :

Equation at the end of step  4  :

        8      (5x - 12)    

 (-x +  —) -  (————————— -  3)  = 0  

        3         24        

Step  5  :

Rewriting the whole as an Equivalent Fraction :

5.1   Subtracting a whole from a fraction  

Rewrite the whole as a fraction using  24  as the denominator :

        3     3 • 24

   3 =  —  =  ——————

        1       24  

Adding fractions that have a common denominator :

5.2       Adding up the two equivalent fractions  

(5x-12) - (3 • 24)     5x - 84

——————————————————  =  ———————

        24               24    

Equation at the end of step  5  :

        8     (5x - 84)

 (-x +  —) -  —————————  = 0  

        3        24    

Step  6  :

           8

Simplify   —

           3

Equation at the end of step  6  :

        8     (5x - 84)

 (-x +  —) -  —————————  = 0  

        3        24    

Step  7  :

Rewriting the whole as an Equivalent Fraction :

7.1   Adding a fraction to a whole  

Rewrite the whole as a fraction using  3  as the denominator :

          -x     -x • 3

    -x =  ——  =  ——————

          1        3    

Adding fractions that have a common denominator :

7.2       Adding up the two equivalent fractions  

-x • 3 + 8     8 - 3x

——————————  =  ——————

    3            3    

Equation at the end of step  7  :

 (8 - 3x)    (5x - 84)

 ———————— -  —————————  = 0  

    3           24    

Step  8  :

Calculating the Least Common Multiple :

8.1    Find the Least Common Multiple  

     The left denominator is :       3  

     The right denominator is :       24  

       Number of times each prime factor

       appears in the factorization of:

     Least Common Multiple:  

     24  

Calculating Multipliers :

8.2    Calculate multipliers for the two fractions  

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 8

  Right_M = L.C.M / R_Deno = 1

Making Equivalent Fractions :

8.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.  

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.      (8-3x) • 8

  ——————————————————  =   ——————————

        L.C.M                 24    

  R. Mult. • R. Num.      (5x-84)

  ——————————————————  =   ———————

        L.C.M               24    

Adding fractions that have a common denominator :

8.4       Adding up the two equivalent fractions  

(8-3x) • 8 - ((5x-84))     148 - 29x

——————————————————————  =  —————————

          24                  24    

Equation at the end of step  8  :

 148 - 29x

 —————————  = 0  

    24    

Step  9  :

When a fraction equals zero :

9.1    When a fraction equals zero ...

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the denominator, Tiger multiplys both sides of the equation by the denominator.

Here's how:

 148-29x

 ——————— • 24 = 0 • 24

   24    

Now, on the left hand side, the  24  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :

  148-29x  = 0

Solving a Single Variable Equation :

9.2      Solve  :    -29x+148 = 0  

Subtract  148  from both sides of the equation :  

                     -29x = -148  

Multiply both sides of the equation by (-1) :  29x = 148  

Divide both sides of the equation by 29:

                    x = 148/29 = 5.103  

One solution was found :

                  x = 148/29 = 5.103


hunterp1977boy: ??
hunterp1977boy: so are u taking the test
believers: the person who asks the Q can (only) make answer brainliest
hunterp1977boy: yay
hunterp1977boy: ok but are u taking the teat
hunterp1977boy: *test*
believers: no
hunterp1977boy: so y u need it
hunterp1977boy: the a
hunterp1977boy: can u give a thanes ans 5 rating becus it took a long time answering
Similar questions