x+2y=-1;2x-3y=12.. solve the following simultaneous equations using Cramer rule
Answers
Step-by-step explanation:
Given, x + 2y = -1 => x + 2y + 1 = 0
2x - 3y = 12 => 2x - 3y - 12 = 0
according to Cramer's rule,
when two equations a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0 .
then, \frac{x}{b_1c_2-b_2c_1}=\frac{-y}{a_1c_2-a_2c_1}=\frac{1}{a_1b_2-b_1a_2}
now, use it here,
equations :- x + 2y + 1 = 0
2x -3y - 12 = 0
x/{2 × (-12) - 1 × (-3)} = -y/{1 × (-12) - 1 × 2} = 1/{1 × (-3) - 2 × 2}
=> x/(-24 + 3) = -y/(-12 - 2) = 1/(-3 - 4)
please mark me as a brianliest and follow me
=> x/-21 = -y/-14 = 1/-7
=> x = -21/-7 = 3 and y = 14/-7 = -2
hence, x = 3 and y = -2
Step-by-step explanation:
Now,
x+2y = -1
a1=1 b1=2 c1 = -1
Also,
2x-3y=12
a2=2 b2= -3 c2=12
D = |a1 b1 | |1 2| = (1×-3) - (2×2)
|a2 b2| |2 -3| = (-3) - (4)
= -3 -4
= -7
Dx = |c1 b1 | |-1 2 | = (-1×-3) - (2×12)
|c2 b2| |12 -3| = (3) - (24)
= 3-24
= -21
Dy = |a1 c1 | | 1 -1| = (1×12) - (-1×2)
|a2 c2| |2 12| = (12) + (2)
= 14
x = Dx/D = -21/-7 = 3/1 x=3
y = Dy/D = 14/-7 = -2/1 y=-2