x+2y=2,2x+3y=3 by inversion method
Answers
2x + 3y = 3
Write in matrix form:
\begin{lgathered}\left(\begin{array}{cc} 1 \ \ 2 \\ 2 \ \ 3\end{array}\right)\left(\begin{array}{cc} x\\ y\end{array}\right) = \left(\begin{array}{cc} 2\\ 3\end{array}\right)\end{lgathered}
(
1 2
2 3
)(
x
y
)=(
2
3
)
Find the determinant:
\begin{lgathered}\left|\begin{array}{cc} 1 \ \ 2 \\ 2 \ \ 3\end{array}\right| = (1)(3) - (2)(2) = -1\end{lgathered}
∣
∣
∣
∣
1 2
2 3
∣
∣
∣
∣
=(1)(3)−(2)(2)=−1
Find the inverse matrix:
\begin{lgathered}\text {inverse of} \left(\begin{array}{cc} 1 \ \ 2 \\ 2 \ \ 3\end{array}\right) = (-1)\left(\begin{array}{cc} 3 \ \ -2 \\ -2 \ \ \ \ 1\end{array}\right) = \left(\begin{array}{cc} -3 \ \ \ 2 \\ 2 \ \ -1\end{array}\right)\end{lgathered}
inverse of(
1 2
2 3
)=(−1)(
3 −2
−2 1
)=(
−3 2
2 −1
)
Multiply the inverse to both sides:
\begin{lgathered}\left(\begin{array}{cc} 1 \ \ 2 \\ 2 \ \ 3\end{array}\right) \left(\begin{array}{cc} -3 \ \ \ 2 \\ 2 \ \ -1\end{array}\right) \left(\begin{array}{cc} x\\ y\end{array}\right) = \left(\begin{array}{cc} 2\\ 3\end{array}\right) \left(\begin{array}{cc} -3 \ \ \ 2 \\ 2 \ \ -1\end{array}\right)\end{lgathered}
(
1 2
2 3
)(
−3 2
2 −1
)(
x
y
)=(
2
3
)(
−3 2
2 −1
)
Left Hand Side (LHS):
\begin{lgathered}\left(\begin{array}{cc} 1 \ \ 2 \\ 2 \ \ 3\end{array}\right) \left(\begin{array}{cc} -3 \ \ \ 2 \\ 2 \ \ -1\end{array}\right) \left(\begin{array}{cc} x\\ y\end{array}\right)\end{lgathered}
(
1 2
2 3
)(
−3 2
2 −1
)(
x
y
)
\begin{lgathered}= \left(\begin{array}{cc} (1)(-1) + (2)(2) \ \ (1)(2) + (2)(-1) \\ 2(-3) + 3(2) \ \ 2(2) + 3(-1)\end{array}\right) \ \left(\begin{array}{cc} x\\ y\end{array}\right)\end{lgathered}
=(
(1)(−1)+(2)(2) (1)(2)+(2)(−1)
2(−3)+3(2) 2(2)+3(−1)
) (
x
y
)
\begin{lgathered}= \left(\begin{array}{cc}1 \ \ 0 \\0 \ \ 1 \end{array}\right) \ \left(\begin{array}{cc} x\\ y\end{array}\right)\end{lgathered}
=(
1 0
0 1
) (
x
y
)
\begin{lgathered}= \left(\begin{array}{cc} x\\ y\end{array}\right)\end{lgathered}
=(
x
y
)
Right Hand Side (RHS):
\begin{lgathered}\left(\begin{array}{cc} 2\\ 3\end{array}\right) \left(\begin{array}{cc} -3 \ \ \ 2 \\ 2 \ \ -1\end{array}\right)\end{lgathered}
(
2
3
)(
−3 2
2 −1
)
\begin{lgathered}= \left(\begin{array}{cc} 2(-3) + 3(2)\\ 2(2) + 3(-1) \end{array}\right)\end{lgathered}
=(
2(−3)+3(2)
2(2)+3(−1)
)
\begin{lgathered}= \left(\begin{array}{cc}0\\ 1 \end{array}\right)\end{lgathered}
=(
0
1
)
Find x and y:
LHS = RHS
\begin{lgathered}\left(\begin{array}{cc} x\\ y\end{array}\right) = \left(\begin{array}{cc}0\\ 1 \end{array}\right)\end{lgathered}
(
x
y
)=(
0
1
)
x = 0x=0
y = 1y=1
Answer: x = 0, y = 1
Answer:
x = 0 and y = 1
Step-by-step explanation:
So x = 0 and y = 1