Math, asked by raj4571, 1 year ago

(x-2y-z)^2
(x - 2y - z)^{2}

Answers

Answered by Anonymous
0

 {(x - 2y - z)}^{2}   \\  \\  =  > here \: we \: applied \: this \: formula \:  \\  \\  =  >  {(a + b + c)}^{2} =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca \\  \\   \:  \: here \:  \:  \: a = x \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  b =  - 2y \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: c =  - z \\  \\ {(x - 2y - z)}^{2} \:  =  {x}^{2}  + 4 {y}^{2}  +  {z}^{2}  + 2(x)( - 2y) \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  + 2(  - 2y)( - z) + 2( - z)(x) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  {x}^{2}  + 4 {y}^{2}  +  {z}^{2}  - 4xy + 4yz - 2xz

thanks:

Similar questions