Math, asked by jiyamann3769, 3 months ago

x/3 - 1/4 =x/5+1/6 . find the value of x.?​

Answers

Answered by Flaunt
13

\sf\huge\bold{\underline{\underline{{Solution}}}}

  \sf =  >  \dfrac{x}{3}  -  \dfrac{1}{4}  =  \dfrac{x}{5}  +  \dfrac{1}{6}

Now,taking LCM of fractional value to both sides

 \sf =  >  \dfrac{4x - 3}{12}  =  \dfrac{6x + 5}{30}

cross multiply to both sides

➙30(4x-3)=12(6x+5)

➙120x-90= 72x+60

Making like terms together

➙120x-72x= 60+90

➙48x= 150

➙x= 150/48

x= 75/24=25/8

Check:

Taking LHS

 \ =  >  \dfrac{ \dfrac{25}{8} }{3}  -  \dfrac{1}{4}

 \sf =  >  \dfrac{25}{24}  -  \dfrac{1}{4}

 \sf =  >  \dfrac{25 - 6}{24}  =  \dfrac{19}{24}

Taking RHS

 \sf =  >  \dfrac{ \dfrac{25}{8} }{5}  +  \dfrac{1}{6}

 \sf =  >  \dfrac{25}{40}  +  \dfrac{1}{6}

 \sf =  >  \dfrac{75 + 20}{120}  =  \dfrac{95}{120}  =  \dfrac{19}{24}

Hence,LHS = RHS(verified)

Answered by cuteangle97
11

Step-by-step explanation:

\huge\red{Solution}

 =  >  \:  \frac{x}{3}  -  \frac{1}{4}  =  \frac{x}{5}  +  \frac{1}{6}

Now, taking LCM of fractional value to both sides

 =   >  \:  \frac{4x - 3}{12}  =  \frac{6x +5 }{30}

Multiple to both sides

 =  >  \: 30(4x - 3) = 12(6x + 5)

 =  >  \: 120x - 90 = 72x + 60

Like terms are...

 =  > 120x - 72x = 60 + 90

 =  > 48x = 150

 =   =  > x = 150| 48

 =  =  > x = 75| 24 = 25| 8

Taking LHS

 \frac{ \frac{25}{8} }{3}  -  \frac{1}{4}

 \frac{25}{24}  -  \frac{1}{4}

 =  =  >  \:  \frac{25 - 6}{24}  =  \frac{19}{24}

Taking RHS

 =  =  >  \:  \frac{ \frac{25}{8} }{5} +  \frac{1}{6}

 =  =  >  \:  \frac{25}{40}  +  \frac{1}{6}

 =  =  >  \:  \frac{75 + 20}{120}  =  \frac{95}{120}  =  \frac{19}{24}

Hope it's helpful to you

Similar questions