Math, asked by ramana59, 1 year ago

x^3 + 1/x^3 = 488 then x^3 - 1/x^3 =

Answers

Answered by LovelyG
11

Answer:

\large{\underline{\boxed{\sf x {}^{3}  -  \frac{1}{x ^{3} } = 57 \sqrt{60}}}}

Step-by-step explanation:

Given that ;

 \tt x^{3}  +  \dfrac{1}{x {}^{3} }  = 488

We know that ;

 \tt (x +  \dfrac{1}{x} ) {}^{3}  = x {}^{3}  +  \dfrac{1}{x {}^{3} }  + 3(x +  \dfrac{1}{x} )

Let the value of (x + 1/x) be a.

 \implies \tt a {}^{3}  = 488 + 3a \\  \\  \implies \tt a {}^{3}  - 3a - 488 = 0

Using Hit-and-Trial method, put a = 8.

 \implies \tt (8) {}^{3}  - 3(8) - 488 \\  \\  \implies \tt 512 - 24 - 488 \\  \\  \implies \tt 512 - 512 \\  \\  \implies \tt 0

Therefore, value of a is 8.

 \implies \tt x +  \frac{1}{x}  = a \\  \\  \implies \tt x +  \frac{1}{x}  = 8

_______________________

We know that ;

  \tt (x -  \frac{1}{x} ) {}^{2}  = (x +  \frac{1}{x} ) {}^{2}  - 4 \\  \\  \implies \tt (x -  \frac{1}{x} ) {}^{2}  =( 8)^{2}  - 4 \\  \\ \implies \tt (x -  \frac{1}{x} ) {}^{2}  = 64 - 4 \\  \\ \implies \tt (x -  \frac{1}{x} ) {}^{2}  = 60 \\  \\ \implies \tt x -  \frac{1}{x}  =  \pm  \sqrt{60}

On cubing both sides,

\implies \tt (x -  \frac{1}{x} ) {}^{3}  = ( \sqrt{60} ) {}^{3}  \\  \\ \implies \tt x {}^{3}  -  \frac{1}{x {}^{3} }  - 3(x -  \frac{1}{x} )  = 60 \sqrt{60}  \\  \\ \implies \tt x {}^{3}  -  \frac{1}{x {}^{3} } - 3( \sqrt{60} ) = 60 \sqrt{60}  \\  \\ \implies \tt x {}^{3}  -  \frac{1}{x { }^{3} } = 60 \sqrt{60}  - 3 \sqrt{60}  \\  \\ \boxed{ \bf \therefore \:  x {}^{3}  -  \frac{1}{x {}^{3} } = 57 \sqrt{60} }

Similar questions