Math, asked by NikitaMahato, 1 year ago

x^3-12x+8 by cardan's method

Answers

Answered by Mohd0aman0mirza
0

Answer:

x^3-3x+12=0

3x^2-3=0

x^2=3/3

x^2=1

x=1

Answered by SrijanShrivastava
7

To Find:

values of x such that:

f(x) =  {x}^{3}  - 12x + 18 = 0

As, Degree[f(x) , x] = 3

and, coefficient(x²) = 0

Therefore, x must be a binomial

Therefore, Substituting:

x = u + v  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  : ∀  \: u,v \in ℝ

And so

  {(u + v)}^{3}  - 12(u + v) + 18  = 0

 \\  {u}^{3}  +  {v}^{3}  + 3 uv(u + v)   - 12(u + v) + 18 = 0

 \\  ({u}^{3}  +  {v}^{3}  + 18 )+ (u + v)(3uv - 12) = 0

Thus, we may conclude that:

(Only Simultaneously)

 \implies  {u}^{3}  +  {v}^{3 }   + 18 = 0 \\   \:  \:  \:  \:  \: \implies 3uv = 12 ⇔uv = 4

Mutlitplying the first equation by u³ on both sides

 {u}^{6}  +18 {u}^{3}  +   {(uv)}^{3}   = 0

 \implies  {u}^{6}  + 18 {u}^{3}  + 64 = 0

  \therefore {u}^{3}  =   \frac{ - 18 \pm \sqrt{324 - 256}  }{2}

 \implies  {u}^{3}  =   - 9 \pm \sqrt{17}

But, as u and v are indistinguishable

 \therefore u =   \sqrt[3]{1} ^{ \neg}  \sqrt[3]{ - 9 +  \sqrt{17} }

And,

v =  (\sqrt[3]{1}  ^{ \neg} )^{2}  \sqrt[3]{ - 9 -  \sqrt{17} }

Thus, all the Roots of the given cubic are:

 \\ x_1 =  \sqrt[3]{ - 9 +  \sqrt{17} }  +  \sqrt[3]{ - 9 -  \sqrt{17} }

 \\ x_{2,3} =   \frac{ \sqrt[3]{  \: 9 +  \sqrt{17} }  +  \sqrt[3]{  \:  9 -  \sqrt{17} } \pm \sqrt{3}i(  \sqrt[3]{9 +  \sqrt{17} } \:   \pm  \sqrt[3]{9 -  \sqrt{17} }  )}{2}

Slide (to see full length answer)→→→→

Similar questions