Math, asked by starkt66663, 10 months ago

x^3 + 13x^2 + 32x + 20
plz help me the person who answer fast i'll mark him/her brainlieast

Answers

Answered by Anonymous
17

SoluTion:

Given polynomial:

  • x³ + 13x² + 32x + 20

To find :

  • Factors of given polynomial

Explanation:

→ x³ + 13x² + 32x + 20

By hit and trial method,

→ put x = 0

→ (0)³ + 13(0)² + 32(0) + 20

→ 20 ≠ 0

Hence, it isn't a factor of given Polynomial.

→ put x = -1

→ (-1)³ + 13(-1)² + 32(-1) + 20

→ -1 + 13 - 32 + 20

→ 0 = 0

Hence, (x + 1) is a factor of given Polynomial.

Now, divide given Polynomial by (x + 1).

[ Refer to the attachment ]

For more factors, split the middle term of x² + 12x + 20.

→ x² + 10x + 2x + 20

→ x(x + 10) + 2(x + 10)

→ (x + 10) (x + 2)

Hence, all factors are (x + 10), (x + 2) and (x + 1).

Attachments:
Answered by sethrollins13
7

✯✯ QUESTION ✯✯

{x}^{3}+{13x}^{2}+32x+{20}..

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

\longmapsto\tt{Constant\:Term=20}

\longmapsto\tt{Factors\:of\:20=+-1,+-2,+-4}........

Now ,

\longmapsto\tt{x-1=0}

\longmapsto\tt{x=1}

Putting x=1 : -

\longmapsto\tt{{(1)}^{3}+13{(1)}^{2}+32(1)+20}

\longmapsto\tt{1+13+32+20}

\longmapsto\tt{66}

No , x-1 is not a factor of x³ + 13x² + 32x + 20..

_______________________

\longmapsto\tt{x+2=0}

\longmapsto\tt{x=-2}

Putting x=-2 : -

\longmapsto\tt{{-2}^{3}+13{(-2)}^{2}+32(-2)+20}

\longmapsto\tt{-8+13(4)-64+20}

\longmapsto\tt{-8+52-64+20}

\longmapsto\tt{-72+72}

\longmapsto\tt{0}

Yes , x+2 is a factor of x³ + 13x² + 32x + 20..

So , Divide the polynomial x³ + 13x² + 32x + 20 by x + 2..

(See the attachment)

Now ,

By Splitting Middle Term : -

\longmapsto\tt{{x}^{2}+11x+10}

\longmapsto\tt{{x}^{2}+10x+1x+10}

\longmapsto\tt{x(x+10)+1(x+10)}

\longmapsto\tt{(x+1)(x+10)}

Three Factors are (x+2) , (x+1) , (x+10)..

Attachments:
Similar questions