Math, asked by 853, 10 months ago

x
= 3-2√2
find
the value of
x² - 1/x^2​

Answers

Answered by ishwarsinghdhaliwal
0

Answer:

x =  3 - 2 \sqrt{2}  \\  \frac{1}{x}  = \frac{1}{3 - 2 \sqrt{2}}  \times   \frac{3  + 2 \sqrt{2}}{3  +  2 \sqrt{2}}  \\  \:  \:  \:  =  \frac{3  + 2 \sqrt{2}}{( {3})^{2} -(2 \sqrt{2} ) ^{2}   }  \\  \:  \:  \:    =  \frac{3  + 2 \sqrt{2}}{9 - 8}  \\  \:  \:  \:  = 3  +  2 \sqrt{2} \\ x +  \frac{1}{x}  \\ = 3 - 2 \sqrt{2}   + 3 + 2 \sqrt{2}  \\ =  6 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ....(1) \\x -  \frac{1}{x}   \\  = 3 - 2 \sqrt{2}  - 3 - 2 \sqrt{2} \\  =  - 4 \sqrt{2}   \:  \:  \:  \:  \: ....(2)\\  now \\  {x}^{2}  -  \frac{1}{ {x}^{2} }  =( x +  \frac{1}{x})(x -  \frac{1}{x} )  \\  =   6 \times ( - 4 \sqrt{2})  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (from \: 1 \: and \: 2)\\  =  - 24 \sqrt{2}

Similar questions