Math, asked by rishabhp0p, 1 year ago

x=3+2√2then find value of (x-1/x)^3​

Answers

Answered by Anonymous
2

  \huge\rm\color{PALEVIOLETRED} Solution

 \sf{x = 3 + 2 \sqrt{2} }

 \sf{  \frac{1}{x}   =  \frac{1}{3 + 2 \sqrt{2} } }

rationalise the denominator.

\sf{  \frac{1}{x}   =  \frac{1}{3 + 2 \sqrt{2} }  \times  \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} } }

\sf{  \frac{1}{x}   =  \frac{3 - 2 \sqrt{2} }{ {3}^{2}  - {( 2 \sqrt{2})}^{2} } }

\sf{  \frac{1}{x}   =  \frac{3 - 2 \sqrt{2} }{9 - 8} }

\sf{  \frac{1}{x}}   =  3 - 2 \sqrt{2}

now,

 \sf{x -  \frac{1}{x}  = 3 + 2 \sqrt{2}  - (3 - 2 \sqrt{2}) }

 \sf{x -  \frac{1}{x}  = 3 + 2 \sqrt{2}  - 3  + 2 \sqrt{2} }

\sf{x -  \frac{1}{x}  = 4 \sqrt{2}}

Hence

\sf{({x -  \frac{1}{x})}^{3}   = {(4 \sqrt{2})}^{3} }

 \fbox{\sf{({x -  \frac{1}{x})}^{3}   =128 \sqrt{2}  }}


were29: hiii jahnvi
were29: I am back
were29: sorry for that I could not talk with you on Sunday 12 pm
were29: please reply
were29: at last sorry again
Anonymous: hello
were29: kahan thi ab tak kab se wait kar raha tha
Similar questions