Math, asked by pranav40904090, 4 months ago

x = (√3 + √2) / (√3 - √2) , then find the value of (x + 1/x)².​

Answers

Answered by nariseamalavathi
0

Step-by-step explanation:

x = (√3 + √2) / (√3 - √2)

=(3+2)/(3-2)×(3+2)/(3+2)

=(3+2)²/(3)²-(2)²

=(3)²+(2)²+232/3-2

=3+2+26

x=5+26

(x+1/x)²

=+1/+2×x×1/x

=+1/+2

=(5+26)²+ [1/(5+26)]²+2

=25+24+206+[1/25+24+206]+2

=49+206(49+206)+1+2(49+206)

=2401+2400+19606+1+98+406

=4900+20006

Answered by tabbie
0

Answer:

Given,

x = ( √3 + √2) / ( √3 - √2)

Therefore,

( x + 1/ x) ^2

=> x2 + 1 + 1/ x2

=> (√3 + √2)^2 / ( √3 - √2)^2 + 1 + 1 / (√3 + √2)^2 / ( √3 - √2)^2. [ From given]

=> (3 + √6 + 2 / 3 - √6 + 2) + 1 + 1 / ( 3 + √6 + 2 / 3 - √6 + 2)

=> ( 5 + √6 / 5 - √6) + 1 + ( 5 - √6 / 5 + √6)

=> ( 5 + √6) ^2 + [ ( 5+ √6) (5- √6)] + (5- √6)^2 / [ ( 5+ √6) (5+ √6) ]

=> 25 + 5√6 + 6 + 25 + 5√6 - 5√6 -6 + 25 - 5√6 + 6 / 25 + 5√6 - 5√6 - 6

=> 25 + 6 + 25 - 6 +5√6 - 5√6 + 25 + 6 / 25 - 6

=> 25+ 25 + 6 +6 +19 / 19

=> 50 + 12 + 19 / 19

=> 62 + 19 / 19

=> 81 / 19

Similar questions