Math, asked by rehadewan08, 1 month ago

x = √3 – √2 / √3 + √2 y = √3 + √2 / √3 – √2 . Find the value of x² – y² .




( don't give unnecessary answers ) ( give correct answer only )​

Answers

Answered by kumaria83527
0

Answer:

We will first rationalize

again

(a+b)2 =a2 +b2 +2ab put then use

x2 = 49 -20√6

next

same process

y2 =49 +20√6

x2 - y2= 49-20√6 - 49 -20√6

= - 40√6

correct ans

Answered by mathdude500
3

\large\underline{\sf{Given- }}

\rm :\longmapsto\:x = \dfrac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }

and

\rm :\longmapsto\:y = \dfrac{ \sqrt{3}   +   \sqrt{2} }{ \sqrt{3}   -   \sqrt{2} }

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\: {x}^{2}  -  {y}^{2}

\begin{gathered}\Large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

\green{\boxed{ \bf \:   {(x - y)}^{2} \:  =  {x}^{2}   -  2xy +  {y}^{2} }}

\green{\boxed{ \bf \:   {(x  +  y)}^{2} \:  =  {x}^{2}    +   2xy +  {y}^{2} }}

\green{\boxed{ \bf \: (x + y)(x - y) \:  =  \:  {x}^{2}  -  {y}^{2} }}

\green{\boxed{ \bf \: {(x + y)}^{2} -  {(x - y)}^{2} \: =  \: 4xy }}

\large\underline{\sf{Solution-}}

Given that,

 \green{\bf :\longmapsto\:x = \dfrac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }}

\rm \:  =  \:  \: \dfrac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \times \dfrac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }

\rm \:  =  \:  \: \dfrac{ {( \sqrt{3}  -   \sqrt{2}  )}^{2}}{{( \sqrt{3} )}^{2} - {( \sqrt{2} )}^{2}}

\rm \:  =  \:  \: \dfrac{{( \sqrt{3} )}^{2} + {( \sqrt{2} )}^{2}   -  2 \times  \sqrt{3} \times  \sqrt{2}  }{3 - 2}

\rm \:  =  \:  \: \dfrac{3 + 2  -  2 \sqrt{6} }{1}

\rm \:  =  \:  \: 5  -  2 \sqrt{6}

\green{ \boxed{\bf\implies \: x = 5  -  2 \sqrt{6}}}

Consider,

 \green{\bf :\longmapsto\:y = \dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -   \sqrt{2} }}

\rm \:  =  \:  \: \dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2} }  \times \dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  +   \sqrt{2} }

\rm \:  =  \:  \: \dfrac{ {( \sqrt{3}  +    \sqrt{2}  )}^{2}}{{( \sqrt{3} )}^{2} - {( \sqrt{2} )}^{2}}

\rm \:  =  \:  \: \dfrac{{( \sqrt{3} )}^{2} + {( \sqrt{2} )}^{2}  + 2 \times  \sqrt{3} \times  \sqrt{2}  }{3 - 2}

\rm \:  =  \:  \: \dfrac{3 + 2 + 2 \sqrt{6} }{1}

\rm \:  =  \:  \: 5 + 2 \sqrt{6}

\green{ \boxed{\bf\implies \: y = 5  +  2 \sqrt{6}}}

Consider,

 \blue{\bf :\longmapsto\: {x}^{2}  -  {y}^{2}}

\rm \:  =  \:  \:  {(5 - 2 \sqrt{6} )}^{2} -  {(5 + 2 \sqrt{6} )}^{2}

\rm \:  =  \:  \:  -  \: \bigg( {(5 + 2 \sqrt{6} )}^{2} -  {(5 - 2 \sqrt{6}) }^{2} \bigg)

\rm \:  =  \:  \:  -  \: \bigg(4 \times 5 \times 2 \sqrt{6} \bigg)

\rm \:  =  \:  \:  -  \: 40 \sqrt{6}

 \blue{ \boxed{\bf\implies \:\bf \:  {x}^{2} -  {y}^{2} =  - 40 \sqrt{6}}}

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions