Math, asked by ajaykumargoud195, 1 year ago

x=√3-√2/√3+√2,y=√3+√2/√3-√2 then the x^2+xy+y^2=?

Answers

Answered by DaIncredible
6
Heya !!

Identities used :

 {(x + y)}^{2}  =  {x}^{2}   +   {y}^{2}  + 2xy \\  \\  {(x - y)}^{2}  =  {x}^{2} +  {y}^{2}   - 2xy \\  \\ (x + y)(x  -  y) =  {x}^{2}  -  {y}^{2}


x =  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3} +  \sqrt{2}  }  \\

On rationalizing the denominator we get,

x =  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }   \times  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  \\  \\ x =  \frac{ {( \sqrt{3}) }^{2}  +  {( \sqrt{2} )}^{2}  - 2( \sqrt{3})( \sqrt{2}  )}{ {( \sqrt{3} })^{2} -  {( \sqrt{2} )}^{2}  }  \\  \\ x =  \frac{3 + 2 - 2 \sqrt{6} }{3 - 2}  \\  \\  x = 5 - 2 \sqrt{6}  \\

On squaring both the sides we get,

 {(x)}^{2}  =  {(5 - 2 \sqrt{6}) }^{2}  \\  \\  {x}^{2}  =  {(5)}^{2}  +  {(2 \sqrt{6}) }^{2}  - 2(5)(2 \sqrt{6} ) \\  \\  {x}^{2}  = 25 + 24 - 20 \sqrt{6}  \\  \\  {x}^{2}  = 49 - 20 \sqrt{6}

y =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  \\

On rationalizing the denominator we get,

y =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \\  \\ y =  \frac{ {( \sqrt{3} )}^{2} +  {( \sqrt{2}) }^{2}  + 2( \sqrt{3}  )( \sqrt{2} )}{ {( \sqrt{3} )}^{2}  -  {( \sqrt{2} )}^{2} }  \\  \\ y =  \frac{3 + 2 + 2 \sqrt{6} }{3 - 2}  \\  \\ y = 5 + 2 \sqrt{6}

On squaring both the sides we get,

 {(y)}^{2}  =  {(5 + 2 \sqrt{6} })^{2}  \\  \\  {y}^{2}  =  {(5)}^{2}  +  {(2 \sqrt{6}) }^{2}  + 2(5)(2  \sqrt{6} ) \\  \\  {y}^{2}  = 25 + 24 + 20 \sqrt{6}  \\  \\  {y}^{2}  = 49 + 20  \sqrt{6}

Now putting the values,

 {x}^{2}  +  {y}^{2}  + xy    \\  \\ = (49 - 20 \sqrt{6} )  + (49 + 20 \sqrt{6}) + (5 - 2 \sqrt{6} )(5 + 2 \sqrt{6} ) \\  \\  = 49 - 20 \sqrt{6} + 49 + 20 \sqrt{6}   + ( {(5)}^{2}  -  {(2 \sqrt{6} )}^{2} ) \\  \\  = 98 + (25 - 24) \\  \\  = 98 + 1 \\  \\  = 99

Hope this helps ☺
Similar questions