Math, asked by kkhushikumariz2006, 2 months ago

x= ³√(2+√3 ,then x³+1/x³ is​

Answers

Answered by Anonymous
4

Answer :-

\implies\sf x = \sqrt[3]{2+\sqrt3}

\implies\sf x = (2+\sqrt3)^\frac{1}{3}

Calculating value of x³ :-

\implies\sf x^3 = \left[(2+\sqrt3)^\frac{1}{3}\right]^3

\implies\sf x^3 = (2+\sqrt3)^{\not3\times \frac{1}{\not3}}

\implies\sf x^3 = 2 + \sqrt3

Calculating value of 1/x³ :-

\implies\sf \dfrac{1}{x^3} = \dfrac{1}{2+\sqrt3}

\implies\sf \dfrac{1}{x^3} = \dfrac{1}{2+\sqrt3} \times \dfrac{2-\sqrt3}{2-\sqrt3}

\implies\sf \dfrac{1}{x^3} = \dfrac{2-\sqrt3}{(2+\sqrt3)(2-\sqrt3)}

\implies\sf \dfrac{1}{x^3} = \dfrac{2-\sqrt3}{2^2 - (\sqrt3)^2}

\implies\sf \dfrac{1}{x^3} = \dfrac{2-\sqrt3}{4-3}

\implies\sf \dfrac{1}{x^3} = \dfrac{2-\sqrt3}{1}

\implies\sf \dfrac{1}{x^3} = 2-\sqrt3

Calculating value of x³ + 1/x³ :-

\implies\sf x^3 + \dfrac{1}{x^3} = 2+\sqrt3+2-\sqrt3

\implies\boxed{\sf x^3 + \dfrac{1}{x^3} = 4}

Additional information :-

\bf Algebraic\:Identities\:\bigstar\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\8)\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})

Answered by 12thpáìn
8

Given

  •  \sf x=\sqrt[3]{2+\sqrt{3}}

To Find

  • \sf x³+\dfrac{1}{x³}

Solution

 \sf x=\sqrt[3]{2+\sqrt{3}}

 \sf x =( 2+\sqrt{3} )^{ \frac{1}{3} }

On Cubing both sides

~~~~~~:~~\implies\sf  {x}^{3}  = \{( 2+\sqrt{3} )^{ \frac{1}{3} }  \}^{3}

~~~~~~:~~\implies\sf  {x}^{3}  = \{( 2+\sqrt{3} )^{ 3 \times \frac{1}{3} }  \}

~~~~~~:~~ \pink{\implies\sf  {x}^{3}  = ( 2+\sqrt{3} ) }  \\  \\  \\

~~~~~~:~~\implies\sf  \dfrac{1}{x³}  =\dfrac{1}{ ( 2+\sqrt{3} )}

{~~~~~~:~~\implies\sf  \dfrac{1}{x³}  =\dfrac{1}{  2+\sqrt{3}  }   \times  \dfrac{2 - \sqrt{3}  }{2 -  \sqrt{3} } }

{~~~~~~:~~\implies\sf  \dfrac{1}{x³}  =\dfrac{2  - \sqrt{3} }{   {2}^{2}  - (\sqrt{3}  )^{2} }    }

{~~~~~~:~~\implies\sf  \dfrac{1}{x³}  =\dfrac{2  - \sqrt{3} }{   4 - 3 }    }

{~~~~~~:~~\implies\sf   \green{\dfrac{1}{x³}  =2 -  \sqrt{3} }   }

Now

{~~~~~~:~~\implies\sf   x³+\dfrac{1}{x³}= (2+\sqrt{3})+(2-\sqrt{3})}

{~~~~~~:~~\implies\sf   x³+\dfrac{1}{x³}= 2   + 2\:  \:  \: \xcancel{+\sqrt{3}}  \:  \:  \:  \: \xcancel{-\sqrt{3}}}

{~~~~~~~~~~~~~~~~~~~~\boxed{\bf   x³+\dfrac{1}{x³}=4}}\\\\

\begin{gathered}\\\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \bigstar \: \underline{\bf{\blue{More \: Useful \: Formula}}}\\ {\boxed{\begin{array}{cc}\dashrightarrow \sf(a + b)^{2} = {a}^{2} + {b}^{2} + 2ab \\\dashrightarrow \sf(a - b)^{2} = {a}^{2} + {b}^{2} - 2ab \\\dashrightarrow \sf(a + b)(a - b) = {a}^{2} - {b}^{2} \\\dashrightarrow \sf(a + b) ^{3} = {a}^{3} + b^{3} + 3ab(a + b) \\ \dashrightarrow\sf(a - b) ^{3} = {a}^{3} - b^{3} - 3ab(a - b) \\ \dashrightarrow\sf a ^{3} + {b}^{3} = (a + b)(a ^{2} + {b}^{2} - ab) \\\dashrightarrow \sf a ^{3} - {b}^{3} = (a - b)(a ^{2} + {b}^{2} + ab \\\dashrightarrow \sf{a²+b²=(a+b)²-2ab}\\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions