x/3-2/x+y=1
X/4+3/X+y=3
Answers
Answered by
14
Comparing both the values of x from ( 1 ) and ( 2 ) ,
3 + 6a = 12 - 12a
12a + 6a = 12 - 3
18a = 9
Putting the value of a in ( 1 ),
In the beginning, we assumed 1 / x + y as a ,so
Answered by
19
x / 3 - 2 / x + y = 1
Let 1 / x + y = z
Therefore, x / 3 - 2 / x +y = x / 3 - 2z
And, x / 4 + 3 / x + y = x / 4 + 3z
Then,
x / 3 - 2z = 1 ---- 1
x / 4 + 3z = 3 ----2
In 1 ,
x / 3 - 2z = 1
x - 6z = 3
x = 3 + 6z ----3
In 2,
x / 4 + 3z = 3
x + 12z = 12
x = 12 - 12z --- 4
eq 3 = eq 4
x = x
3 + 6z = 12 - 12z
1 + 2z = 4 - 4z
- 6z = - 3
z = 1 / 2
1 / x + y = 1 / 2
x + y = 2
substituting the value of x + y or z in 3
x = 3 + 6( 1 / 2 )
x = 3 + ( 6 × 1 / 2 )
x = 3 + 3
x = 6
x + y = 2
6+ y = 2
y = - 4
Let 1 / x + y = z
Therefore, x / 3 - 2 / x +y = x / 3 - 2z
And, x / 4 + 3 / x + y = x / 4 + 3z
Then,
x / 3 - 2z = 1 ---- 1
x / 4 + 3z = 3 ----2
In 1 ,
x / 3 - 2z = 1
x - 6z = 3
x = 3 + 6z ----3
In 2,
x / 4 + 3z = 3
x + 12z = 12
x = 12 - 12z --- 4
eq 3 = eq 4
x = x
3 + 6z = 12 - 12z
1 + 2z = 4 - 4z
- 6z = - 3
z = 1 / 2
1 / x + y = 1 / 2
x + y = 2
substituting the value of x + y or z in 3
x = 3 + 6( 1 / 2 )
x = 3 + ( 6 × 1 / 2 )
x = 3 + 3
x = 6
x + y = 2
6+ y = 2
y = - 4
Similar questions