x^3+2x^2+2x+1 how can i solve
Answers
p(x)=x³+2x²+2x+1
p(1)=(1)³+2(1)²+2(1)+1
=1+2+2+1
=6
p(-1)=(-1)³+2(-1)²+2(-1)+1
=-1+2-2+1
=0
hence x+1 is a factor of p(x)
p(x)=x³+2x²+2x+1
=x³+x²+x²+x+x+1
=x²(x+1)+x(x+1)+1(x+1)
=(x+1)(x²+x+1)
Answer:
(x+1)(x^2+x+1)
Step-by-step explanation:
Let p(x) = x^3+2x^2+2x+1
By trial and error method, we find that (-1) is a zero of p(x),
p(-1) = (-1)^3+2(-1)^2+2(-1)+1
= (-1)+2(1)+(-2)+1
= (-1)+2-2+1
= 0
So, (x+1) is a factor of p(x).
By long division, we have,
x+1 )+x^3+2x^2+2x+1( x^2+x+1
+x^3+ x^2
(-) (-)
_____________
+x^2+2x+1
+x^2+ x
(-) (-)
____________
+x+1
+x+1
(-) (-)
_________
0
Therefore,
x^3+2x^2+2x+1 = (x+1)(x^2+x+1)