Math, asked by mahantihari14, 3 months ago

(x^3-2y^2)dx+2xy+dy=0

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

( {x}^{3}  - 2 {y}^{2} )dx + 2xy  dy = 0

 \implies \frac{dy}{dx} =  \frac{2 {y}^{2}  -  {x}^{3} }{2xy}  \\

 \implies \frac{dy}{dx}  =  \frac{y}{x}  -  \frac{ {x}^{2} }{2y}  \\

 \implies 2y\frac{dy}{dx}  =  \frac{2 {y}^{2} }{x}  -  {x}^{2} \\

Let \: y^{2}  = t \\  \implies2y \frac{dy}{dx}  =  \frac{dt}{dx}

 \implies \: \frac{dt}{dx}   -  \frac{2 t }{x} =   -  {x}^{2} \\

I.F. =  {e}^{  - \int \frac{2}{x}dx}  =  {e}^{ - 2 ln(x) }   =  \frac{1}{ {x}^{2} } \\

 \implies \frac{t}{ {x}^{2} }  =  \int \frac{1}{ {x}^{2} } .( -  {x}^{2} )dx \\

 \implies \frac{t}{ {x}^{2} }  =   - \int \: dx \\

 \implies \frac{t}{ {x}^{2} }  =   - x  + c\\

 \implies \frac{ {y}^{2} }{ {x}^{2} }  =   - x  + c\\

 \implies {y}^{2}  =  -  {x}^{3}  + c {x}^{2}

Similar questions