Math, asked by Crazyhets02, 8 months ago

(X-3)^3 expand in cubes

Answers

Answered by Asterinn
3

\implies {(x - 3)}^{3}

we know that :-

{(a-b)^3 = a^3 - b^3 - 3ab(a-b)}

\implies {(x - 3)}^{3}    =  {(x)}^{3} -  {(3)}^{3}   - 3.3.x(x - 3)

 \implies{(x)}^{3} -  27 - 9x(x - 3)

\implies{x}^{3} -  27 - 9 {x}^{2}   +  27x

\implies{x}^{3}  - 9 {x}^{2}   +  27x-  27

Answer :

\implies{x}^{3}  - 9 {x}^{2}   +  27x-  27

______________________

\large\bf\red{Learn\:More}

Attach as Additional Information:-

\implies{(a+b)^2 = a^2 + b^2 + 2ab}

\implies{(a-b)^2 = a^2 + b^2 - 2ab}

\implies{(a+b)^3 = a^3 + b^3 + 3ab(a + b)}

\implies{(a-b)^3 = a^3 - b^3 - 3ab(a-b)}

\implies{(a^3+b^3)= (a+b)(a^2 - ab + b^2)}

\implies{(a^3-b^3)= (a-b)(a^2 + ab + b^2)}

_________________________

Also :-

1)a^m \times a^n= {a}^{(m + n)}

2) {( {a}^{m})}^{n}   =  {a}^{mn}

3) {ab}^{n}  =  {a}^{n}  {b}^{n}

4) \frac{ {(a)}^{m} }{ {(a)}^{n} } = {a}^{m - n}

5) {a}^{ - b}  =  \frac{1}{ {a}^{b} }

Similar questions