Math, asked by praneetiGangwal, 5 months ago

x^3+3x+3/x+1/x^3 factorize​

Answers

Answered by Anonymous
0

Answer:

(x+\frac{1}{x} )^{3}

Step-by-step explanation:

Given x^{3}+3x+\frac{3}{x} + \frac{1}{x^{3} }

This can be re-written as shown

x^{3}+\frac{1}{x^{3} } +3x^{2} * (\frac{1}{x} ) + 3 *x* (\frac{1}{x})

This is in the form of a³ + b³ +3a²b + 3ab² = (a + b)³

x^{3}+\frac{1}{x^{3} } +3x^{2} * (\frac{1}{x} ) + 3 *x* (\frac{1}{x}) = (x+\frac{1}{x} )³

Hope that helps you...☺

☻Mark as Brainliest☻

Answered by Anonymous
32

Answer:

ʜᴇʀᴇ ɪs ʏᴏᴜʀ ᴀɴsᴡᴇʀ :-

 {x}^{3}  + 3x +  \frac{3}{x}  +  \frac{1}{ {x}^{3} }  \\  =  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times  {x}^{2}  \times  \frac{1}{x}  + 3 \times x \times  \frac{1}{ {x}^{2} }  \\ now \: \: in \: the \: above \: step \: we \: have \: split \: the \: question \: in \: the \: form \: of \\  {(a + b)}^{3}  \\ since \\  {(a + b)}^{3} =  {a}^{3}  +  {b}^{3}  + 3 {a}^{2} b + 3 a{b}^{2}  \\ so  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times  {x}^{2}  \times  \frac{1}{x}  + 3 \times x \times  \frac{1}{ {x}^{2} }  =  {(x +  \frac{1}{x}) }^{3}  \\

Hope it's helpful

Answered by :-

@MissInfinite

Similar questions