Math, asked by iragoenkan, 11 months ago

(x-3)/4 + (x-1)/5 - (x-2)/3 = 1

Answers

Answered by Cosmique
5

Ⓐⓝⓢⓦⓔⓡ

We have

 \blue{\tt{ \frac{x - 3}{4} +  \frac{x - 1}{5}  -  \frac{x - 2}{3}  = 1 }}

\blue{ \tt{ \frac{x - 3}{4} +  \frac{x - 1}{5}   = 1 +  \frac{x - 2}{3} }}

Taking LCM in both LHS and RHS

\blue{ \tt{ \frac{5x - 15 + 4x - 4}{20} =  \frac{3 + x - 2}{3}  }}

\blue{ \tt{ \frac{9x - 19}{20} =  \frac{x + 1}{3}  }}

Cross multiplying

\blue{ \tt{3(9x - 19) = 20(x + 1)}}

\blue{ \tt{27x - 57 = 20x + 20}}

\blue{ \tt{27x - 20x = 20 + 57}}

\blue{ \tt{7x = 77}}

\boxed{ \purple{ \bf{x = 11}}}

Answered by Anonymous
2

GIVEN :-

\rm{ \dfrac{x - 3}{4} + \dfrac{x - 1}{5} - \dfrac{x - 2}{3} = 1 }

TO FIND :-

value of x in

\rm{ \dfrac{x - 3}{4} + \dfrac{x - 1}{5} - \dfrac{x - 2}{3} = 1 }

SOLUTION :-

 \implies \rm{ \dfrac{x - 3}{4} + \dfrac{x - 1}{5} = 1 + \dfrac{x - 2}{3} }

Taking LCM in both LHS and RHS

\implies \rm{ \dfrac{5x - 15 + 4x - 4}{20} = \dfrac{3 + x - 2}{3} }

\implies\rm{ \dfrac{9x - 19}{20} = \dfrac{x + 1}{3} }

now by Cross multiplying

\implies \rm{3(9x - 19) = 20(x + 1)}

\implies \rm{27x - 57 = 20x + 20}

\implies \rm{27x - 20x = 20 + 57}

\implies \rm{7x = 77}

 \implies \boxed{ \boxed{ \rm{x = 11}}}

Similar questions