Math, asked by golupandeypandey4050, 9 days ago

x=3+4i prove that x^4-12x^3+70x^2-204x+225=0​

Answers

Answered by senboni123456
1

Answer:

Step-by-step explanation:

We have,

x=3+4i

\implies\,x-3=4i

\implies\,\left(x-3\right)^2=\left(4i\right)^2

\implies\,{x}^{2}-6x+9=-16

\implies\,{x}^{2}-6x+9+16=0

\implies\,{x}^{2}-6x+25=0\,\,\,\,\,\,\,\,\,\,\,\,...(1)

Now,

{x}^{4}-12{x}^{3}+70{x}^{2}-204{x}+225

={x}^{4}-6{x}^{3}+25{x}^{2}-6{x}^{3}+45{x}^{2}-204{x}+225

={x}^{4}-6{x}^{3}+25{x}^{2}-6{x}^{3}+36{x}^{2}-150{x}+9{x}^{2}-54{x}+225

={x}^{2}\left({x}^{2}-6{x}+25\right)-6x\left({x}^{2}-6{x}^{2}+25\right)+9\left({x}^{2}-6{x}+25\right)

=\left({x}^{2}-6x+9\right)\left({x}^{2}-6{x}+25\right)\\

From (1), we get,

=\left({x}^{2}-6x+9\right)\times0\\

=0\\

Similar questions