Math, asked by shanthasampath23, 6 months ago

x^3-4x^2-x+1=(x-2)^3​

Answers

Answered by Arceus02
1

Given:-

  •  \sf {x}^{3}  - 4 {x}^{2}  - x + 1 =  {(x - 2)}^{3}

\\

To find:-

  • The value of x

\\

Answer:-

Given that,

 \sf {x}^{3}  - 4 {x}^{2}  - x + 1 =  {(x - 2)}^{3}

Expanding RHS using (a - b)³ = a³ - b³ - 3ab(a - b)

\sf \longrightarrow {x}^{3}  - 4 {x}^{2}  - x + 1 =   {x}^{3}  - 2 {}^{3}  - 3(x)(2)(x - 2)

\sf \longrightarrow {x}^{3}  - 4 {x}^{2}  - x + 1 =   {x}^{3}  - 8  - 6x(x - 2)

\sf \longrightarrow  \cancel{{x}^{3}}  - 4 {x}^{2}  - x + 1 =    \cancel{{x}^{3}}  - 8  - 6 {x}^{2}   + 12x

 \sf \longrightarrow 6 {x}^{2}  - 4 {x}^{2}  - x - 12x + 1 + 8 = 0

 \sf \longrightarrow 2 {x}^{2}  - 13x  + 9 = 0

 \\

On comparing with \sf ax^2 + bx + c = 0, we get,

  • a = 2
  • b = -13
  • c = 9

\\

By quadratic formula,

 \sf \longrightarrow  x_{1,2} =  \dfrac{ - b \pm \sqrt{b {}^{2} - 4ac } }{2a}

 \sf \longrightarrow  x_{1,2} =  \dfrac{ - ( - 13) \pm \sqrt{ {( - 13)}^{2} - (4 \times 2 \times 9) } }{2 \times 2}

 \sf \longrightarrow  x_{1,2} =  \dfrac{ 13 \pm \sqrt{ {169 - 72 } }}{2 \times 2}

 \sf \longrightarrow  x_{1,2} =  \dfrac{ 13 \pm \sqrt{ {97}}}{4}

\\

Hence, the two solutions are,

 \longrightarrow \underline{ \underline{ \sf{ \green{ x_{1}  =  \dfrac{13 + \sqrt{97} }{4} }}}}

 \longrightarrow \underline{ \underline{ \sf{ \green{ x_{2}  =  \dfrac{13  -  \sqrt{97} }{4} }}}}

Similar questions