X=3+√5 find value of x^2+1/x^2
Answers
15 + 2root5 /14 + 2root5
Hope it helps
Answer:
✴1st method
x= 3 +5^1/2……………(1)
x= 3 +5^1/2……………(1)1/x= 1/(3+5^1/2) ×[(3–5^1/2)/(3–5^1/2)]
x= 3 +5^1/2……………(1)1/x= 1/(3+5^1/2) ×[(3–5^1/2)/(3–5^1/2)]1/x=(3–5^1/2)/(9–5).
x= 3 +5^1/2……………(1)1/x= 1/(3+5^1/2) ×[(3–5^1/2)/(3–5^1/2)]1/x=(3–5^1/2)/(9–5).1/x =(3–5^1/2)/4……………(2).
➯On adding eq. (1) & (2).
x+1/x =15/4+(3.5^1/2)/4=(3/4) (5+5^1/2)
✰Squaring both sides
x^2+1/x^2 +2=(9/16)(25+5+10.5^1/2)
x^2+1/x^2 +2=(9/16)(25+5+10.5^1/2)x^2+1/x^2 =(9/16) (30+10.5^1/2)-2
x^2+1/x^2 +2=(9/16)(25+5+10.5^1/2)x^2+1/x^2 =(9/16) (30+10.5^1/2)-2x^2+1/x^2=(270+90.5^1/2–32)/16
x^2+1/x^2 +2=(9/16)(25+5+10.5^1/2)x^2+1/x^2 =(9/16) (30+10.5^1/2)-2x^2+1/x^2=(270+90.5^1/2–32)/16x^2+1/x^2=(238+90.5^1/2)/16
x^2+1/x^2 +2=(9/16)(25+5+10.5^1/2)x^2+1/x^2 =(9/16) (30+10.5^1/2)-2x^2+1/x^2=(270+90.5^1/2–32)/16x^2+1/x^2=(238+90.5^1/2)/16x^2+1/x^2=(119+45.5^1/2)/8 . Answer
✴2nd method:-
x= 3+5^1/2 or squaring both sides.
x= 3+5^1/2 or squaring both sides.x^2 =9+5+6.5^1/2
x= 3+5^1/2 or squaring both sides.x^2 =9+5+6.5^1/2x^2= 14 +6.5^1/2…………………..(1).
x= 3+5^1/2 or squaring both sides.x^2 =9+5+6.5^1/2x^2= 14 +6.5^1/2…………………..(1).1/x^2= 1/(14+6.5^1/2)×[(14–6.5^1/2)/(14–6.5^1/2)].
x= 3+5^1/2 or squaring both sides.x^2 =9+5+6.5^1/2x^2= 14 +6.5^1/2…………………..(1).1/x^2= 1/(14+6.5^1/2)×[(14–6.5^1/2)/(14–6.5^1/2)].1/x^2=(14–6.5^1/2)/(196–180)
x= 3+5^1/2 or squaring both sides.x^2 =9+5+6.5^1/2x^2= 14 +6.5^1/2…………………..(1).1/x^2= 1/(14+6.5^1/2)×[(14–6.5^1/2)/(14–6.5^1/2)].1/x^2=(14–6.5^1/2)/(196–180)1/x^2=2(7–3.5^1/2)/16
x= 3+5^1/2 or squaring both sides.x^2 =9+5+6.5^1/2x^2= 14 +6.5^1/2…………………..(1).1/x^2= 1/(14+6.5^1/2)×[(14–6.5^1/2)/(14–6.5^1/2)].1/x^2=(14–6.5^1/2)/(196–180)1/x^2=2(7–3.5^1/2)/161/x^2=(7–3.5^1/2)/8………………….(2).
✰On adding eq. (1) & (2).
x^2+1/x^2=(14+7/8)+(6–3/8).5^1/2.
x^2+1/x^2=(14+7/8)+(6–3/8).5^1/2.x^2+1/x^2=(119+45.5^1/2)/8 . Answer.