Math, asked by muqadasabbasi14, 4 months ago

x = 3 +√5 , then the value of x – 1 / x will be​

Answers

Answered by shahranjit808
9

ANSWER 》3/2

PLEASE MARK AS BRAINLIST ANSWER

Attachments:
Answered by AestheticSoul
13

Given

  • x = 3 + √5

To find

  • The value of x - 1/x

Solution

: \implies \sf \gray{\cfrac{1}{x} =  \cfrac{1}{3 +  \sqrt{5} } }  \\  \\  \\  \qquad: \:  \tt \pink{here \: we \: will \: rationalize \: the \: denominator }  \\  \\  \\  : \implies \sf \gray{ \cfrac{1}{x}  =  \cfrac{3 -  \sqrt{5} }{(3 +  \sqrt{5})(3 -  \sqrt{5})  }} \\  \\  \\  \qquad: \implies \sf \gray{ \cfrac{1}{x}  =  \cfrac{3 -  \sqrt{5} }{( {3})^{2}  - ( { \sqrt5})^{2}}} \\  \\  \\  \qquad: \implies \sf \gray{ \cfrac{1}{x} =  \cfrac{3 -  \sqrt{5} }{9 - 5}} \\  \\  \\  \qquad: \implies \sf  \boxed {\sf{\underline \purple{\cfrac{1}{x}  =  \cfrac{3 -  \sqrt{5} }{4} } }}\quad \red{ \bigstar}

\qquad: \implies \sf \gray{x -  \cfrac{1}{x} =  3 +  \sqrt{5}  -   \bigg(\cfrac{3 -  \sqrt{5}}{4} \bigg) } \\  \\  \\ \qquad: \implies \sf \gray{x -  \cfrac{1}{x} = 3 +  \sqrt{5}  -  \cfrac{3 +  \sqrt{5}}{4}} \\  \\  \\ \qquad: \implies \sf \gray{ \cfrac{4(3 +  \sqrt{5} ) - 3  + \sqrt{5} }{4} }  \\  \\  \\  \qquad: \implies \sf \gray{ \cfrac{12  + 4 \sqrt{5}  - 3 +  \sqrt{5}}{4} }  \\  \\  \\  \qquad: \implies \sf \gray{ \cfrac{9 + 5 \sqrt{5} }{4} } \\  \\  \\  \qquad: \implies \sf \red{x -  \cfrac{1}{x} =  \cfrac{9 + 5 \sqrt{5} }{4}}

Similar questions