Math, asked by sharmayogesh9871, 10 months ago

x^3+6x^2-5x by (x-2) by long division method

Answers

Answered by Anonymous
0

Answer:

x • (x3 + 4x2 - 12x - 5)

 ————————————————————————

          x - 2          

Step by step solution :

Step  1  :

             x  

Simplify   —————

           x - 2

Equation at the end of step  1  :

                     x  

 ((x3)+(6•(x2)))-(5•———)

                    x-2

Step  2  :

Equation at the end of step  2  :

                           5x  

 ((x3) +  (6 • (x2))) -  —————

                         x - 2

Step  3  :

Equation at the end of step  3  :

                        5x  

 ((x3) +  (2•3x2)) -  —————

                      x - 2

Step  4  :

Rewriting the whole as an Equivalent Fraction :

4.1   Subtracting a fraction from a whole

Rewrite the whole as a fraction using  (x-2)  as the denominator :

                x3 + 6x2     (x3 + 6x2) • (x - 2)

    x3 + 6x2 =  ————————  =  ————————————————————

                   1               (x - 2)        

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Step  5  :

Pulling out like terms :

5.1     Pull out like factors :

  x3 + 6x2  =   x2 • (x + 6)  

Adding fractions that have a common denominator :

5.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

x2 • (x+6) • (x-2) - (5x)     x4 + 4x3 - 12x2 - 5x  

—————————————————————————  =  ————————————————————

        1 • (x-2)                 1 • (x - 2)      

Step  6  :

Pulling out like terms :

6.1     Pull out like factors :

  x4 + 4x3 - 12x2 - 5x  =  

 x • (x3 + 4x2 - 12x - 5)  

Checking for a perfect cube :

6.2    x3 + 4x2 - 12x - 5  is not a perfect cube

Trying to factor by pulling out :

6.3      Factoring:  x3 + 4x2 - 12x - 5  

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  x3 - 5  

Group 2:  4x2 - 12x  

Pull out from each group separately :

Group 1:   (x3 - 5) • (1)

Group 2:   (x - 3) • (4x)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

6.4    Find roots (zeroes) of :       F(x) = x3 + 4x2 - 12x - 5

Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -5.

The factor(s) are:

of the Leading Coefficient :  1

of the Trailing Constant :  1 ,5

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        10.00      

     -5       1        -5.00        30.00      

     1       1        1.00        -12.00      

     5       1        5.00        160.00      

Polynomial Roots Calculator found no rational roots

Final result :

 x • (x3 + 4x2 - 12x - 5)

 ————————————————————————

          x - 2          

Answered by ksonakshi70
6

Answer:

hope it helps you............

Attachments:
Similar questions