(x+3)/7-(2x-5)/3=(3x-5)/5-25 solve it fast
Pls ans it correctly
Answers
Answer:
The value of x is 25.
Step-by-step explanation:
Given : Equation \frac{x+3}{7}-\frac{2x-5}{3}=\frac{3x-5}{5}-25
7
x+3
−
3
2x−5
=
5
3x−5
−25
To find : Solve the equation ?
Solution :
Equation \frac{x+3}{7}-\frac{2x-5}{3}=\frac{3x-5}{5}-25
7
x+3
−
3
2x−5
=
5
3x−5
−25
Taking LCM,
\frac{3(x+3)-7(2x-5)}{21}=\frac{3x-5-125}{5}
21
3(x+3)−7(2x−5)
=
5
3x−5−125
\frac{3x+9-14x+35}{21}=\frac{3x-5-125}{5}
21
3x+9−14x+35
=
5
3x−5−125
\frac{-11x+44}{21}=\frac{3x-130}{5}
21
−11x+44
=
5
3x−130
Cross multiply,
5(-11x+44)=21(3x-130)5(−11x+44)=21(3x−130)
-55x+220=63x-2730−55x+220=63x−2730
63x+55x=2730+22063x+55x=2730+220
118x=2950118x=2950
x=\frac{2950}{118}x=
118
2950
x=25x=25
Therefore, The value of x is 25.
Answer:
x = 2950/118.
Step-by-step explanation:
(x+3)/7 - (2x-5)/3 = (3x-5)/5 - 25
[3x+9-14x+35]/21 = (3x-5-125)/5
(-11x+44)/21 = (3x-130)/5
-55x+220 = 63x-2730
220+2730 = 63x+55x
2950 = 118x
x = 2950/118.