Math, asked by rpkumar34, 1 year ago


x=3+√8 find the value of x²+1/x²

Answers

Answered by viswabhargav
4

x= 3+√8

⇒1/x = 1/(3+√8) * (3-√8)/(3+√8) =(3-√8)/(3²-(√8)²) = 3-√8

x+1/x = (3+√8)+(3-√8) = 6

So (x+1/x)² = 6²

⇒x² + 1/x² + 2 = 36

x² + 1/x² = 34

Answered by abdul143
2

 \:  \:  \:  \:  \:  \:  \:  \:  \color{green} \huge \frak{Hola! \:  Mate} \\  \\   \underline{\bf{QUESTION}} :  \\  \\   \rightarrow\tiny \bf{x = 3 +\sqrt{8} \:  \:  find \:  the \:  value \:  of \:   {x}^{2} +  \frac{1}{ {x}^{2} }  } \\  \\   \underline{\bf{GIVEN}} :  \\  \\   \rightarrow\tiny \bf{x = 3 +  \sqrt{8} } \\  \\   \underline{\bf{FIND}} :  \\  \\  \rightarrow \tiny \bf{the \: value \: of \:  {x}^{2} +  \frac{1}{ {x}^{2} }  } \\  \\   \underline{\bf{SOLUTION}} :  \\  \\   \rightarrow\tiny \bf{x = 3 +  \sqrt{8} \: ,  \:  \:  \:  \:  \:  \:  \: \:  \frac{1}{x}  =  \frac{1}{3 +  \sqrt{8} }  } \\  \\  \rightarrow \tiny \bf{ \frac{1}{3 +  \sqrt{8}  } } \times  \frac{3 -  \sqrt{8} }{3 -  \sqrt{8} }  =  \frac{3 -  \sqrt{8} }{ {(3)}^{2}  -  { (\sqrt{8)} }^{2} }  \\  \\   \rightarrow\tiny \bf{ \frac{3 -  \sqrt{8} }{9 - 8} } =  \frac{3 -  \sqrt{8} }{1}  = 3 -  \sqrt{8}  \\  \\   \rightarrow\tiny \bf{x +  \frac{1}{ x}  = 3 +   \cancel{ \sqrt{ 8}}  + 3 - \cancel{  \sqrt{8} }} \\  \\  \rightarrow \tiny \bf{x  +   \frac{1}{x}  = 6} \\  \\   \rightarrow\bf{ on \: squaring \: them} \\  \\   \rightarrow \tiny \bf{(x +  \frac{1}{x} )^{2}  = (6)^{2} } \\  \\  \rightarrow \tiny \bf{ {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 36} \\  \\  \rightarrow \tiny \bf{ {x}^{2} +  \frac{1}{ {x}^{2} }  = 36 - 2 } \\  \\  \rightarrow \tiny \bf{ {x}^{2} +  \frac{1}{ {x}^{2} } = 34  } \\  \\   \color{green} \underline{\huge \mathbb{HOPE \:  IT'S \:  HELPFUL}}
Similar questions