Math, asked by swetanks2007, 4 days ago

X^3 - 8x^3 +20x -13 is a prime number.(x is natural number).find x​

Answers

Answered by user0888
10

\Huge\text{$x=2,3,4$}

\Large\textrm{Given: -}

"x^{3}-8x^{2}+20x-13 is a prime. Find x where x is natural."

Let us denote the polynomial f(x).

 

\textrm{Let us substitute}

(x=1)

f(1)=1-8+20-13=0



\Large\boxed{\textrm{Factor Theorem}}

"If f(a)=0, the polynomial f(x) is divisible by (x-a)."

\Large\textrm{We know that: -}

f(1)=0

\textrm{by factor theorem}

f(x)=(x-1)Q(x)

\textrm{applying division}

Q(x)=x^{2}-7x+13

Since the prime f(x) consists of two factors, one factor should attain 1.

\large\textrm{It follows that: -}

(x>0)

[tex]\text{$\begin{cases} & x-1=1 \\ & x^{2}-7x+13>1 \end{cases}$ or $\begin{cases} & x-1>1 \\ & x^{2}-7x+13=1 \end{cases}$}[/tex]

\text{$\begin{cases} & x=2 \\  & x<3,x>4 \end{cases}$ or $\begin{cases} & x>2 \\  & x=3,4 \end{cases}$}

\textrm{hence}

x=2,3,4

But we don't know if the remaining factor is a prime.

\textrm{So, verifying}

x=2 \Longrightarrow f(2)=3

x=3\Longrightarrow f(3)=2

x=4\Longrightarrow f(4)=3

Hence, all numbers are prime.

Similar questions