x^3-8y^2-36xy=216,when x=2y+6
Anonymous:
Should we prove that?
Answers
Answered by
4
If you wanted values of x, y, this might be the answer
[tex](x^3-216)-2(2y)(2y+9x)=0 \\ (x^3-6^3)-2(x-6)(10x-6)=0 \\ (x-6)[(x^2+6x+36)-20x+12]=0 \\ x^2-14x+48=0 \ \ or \ \ x=6 (x-6)(x-8)=0 \ \ or \ \ x=6[/tex].
Hence
[tex](x^3-216)-2(2y)(2y+9x)=0 \\ (x^3-6^3)-2(x-6)(10x-6)=0 \\ (x-6)[(x^2+6x+36)-20x+12]=0 \\ x^2-14x+48=0 \ \ or \ \ x=6 (x-6)(x-8)=0 \ \ or \ \ x=6[/tex].
Hence
Similar questions